Skip to main content
Log in

Theoretical analysis of numerical integration in Galerkin meshless methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study effects of numerical integration on Galerkin meshless methods for solving elliptic partial differential equations with Neumann boundary conditions. The shape functions used in the meshless methods reproduce linear polynomials. The numerical integration rules are required to satisfy the so-called zero row sum condition of stiffness matrix, which is also used by Babuška et al. (Int. J. Numer. Methods Eng. 76:1434–1470, 2008). But the analysis presented there relies on a certain property of the approximation space, which is difficult to verify. The analysis in this paper does not require this property. Moreover, the Lagrange multiplier technique was used to handle the pure Neumann condition. We have also identified specific numerical schemes, diagonal elements correction and background mesh integration, that satisfy the zero row sum condition. The numerical experiments are carried out to verify the theoretical results and test the accuracy of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atluri, S.N., Shen, S.: The Meshless Local Petrov Galerkin Method. Tech. Sci. Press, Duluth (2002)

    MATH  Google Scholar 

  2. Atluri, S.N., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method. In: Aziz, A.K. (ed.) Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, pp. 3–345. Academic Press, San Diego (1972)

    Google Scholar 

  4. Babuška, I., Banerjee, U., Osborn, J.E.: Survey of meshless and generalized finite element methods: a unified approach. Acta Numer. 12, 1–125 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babuška, I., Banerjee, U., Osborn, J.E.: On the approximability and the selection of particle shape functions. Numer. Math. 96, 601–640 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babuška, I., Banerjee, U., Osborn, J.E., Li, Q.: Quadrature for meshless methods. Int. J. Numer. Methods Eng. 76, 1434–1470 (2008)

    Article  MATH  Google Scholar 

  7. Babuška, I., Banerjee, U., Osborn, J.E., Zhang, Q.: Effect of numerical integration on meshless methods. Comput. Methods Appl. Mech. Eng. 198, 2886–2897 (2009)

    Article  Google Scholar 

  8. Beissel, S., Belytschko, T.: Nodal integration of the element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 139, 49–74 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comp. Methods Appl. Mech. Eng. 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  10. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bochev, P., Lehoucq, R.B.: On the finite element solution of the pure Neumann problem. SIAM Rev. 47, 50–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carpinteri, A., Ferro, G., Ventura, G.: The partition of unity quadrature in meshless methods. Int. J. Numer. Methods Eng. 54, 987–1006 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carpinteri, A., Ferro, G., Ventura, G.: The partition of unity quadrature in element free crack modelling. Comput. Struct. 81, 1783–1794 (2003)

    Article  Google Scholar 

  14. Chen, J.S., Wu, C.T., Yoon, S., You, Y.: A stabilized conformal nodal integration for a Galerkin mesh-free method. Int. J. Numer. Methods Eng. 50, 435–466 (2001)

    Article  MATH  Google Scholar 

  15. Chen, J.S., Yoon, S., Wu, C.T.: Non-linear version of stabilized conforming nodal integration Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 53, 2587–6515 (2002)

    Article  MATH  Google Scholar 

  16. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  17. Ciarlet, P.G., Raviart, P.A.: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Proc. Sympos. Univ. Maryland. Baltimore, 1972, pp. 409–474. Academic Press, New York (1972)

    Google Scholar 

  18. De, S., Bathe, K.J.: The method of finite spheres. Comput. Mech. 25, 329–345 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. De, S., Bathe, K.J.: The method of finite squares with improved numerical integration. Comput. Struct. 79, 2183–2196 (2001)

    Article  MathSciNet  Google Scholar 

  20. Dolbow, J., Belytschko, T.: Numerical integration of the Galerkin weak form in meshfree methods. Comput. Mech. 23, 219–230 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duan, Q., Belytschko, T.: Gradient and dilatational stabilizations for stress-point integration in the element-free Galerkin method. Int. J. Numer. Methods Eng. 77, 776–798 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fries, T.P., Belytschko, T.: Convergence and stabilization of stress-point integration in mesh-free and particle methods. Int. J. Numer. Methods Eng. 74, 1067–1087 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fries, T.P., Matthies, H.G.: Classification and overview of meshfree methods. Technical report, Technical University Braunschweig, Brunswick, Germany (2004)

  24. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    MATH  Google Scholar 

  25. González, D., Cueto, E., Martínez, M.A., Doblaré, M.: Numerical integration in natural neighbour Galerkin methods. Int. J. Numer. Methods Eng. 60, 2077–2104 (2004)

    Article  MATH  Google Scholar 

  26. Griebel, M., Schweitzer, M.A.: A particle-partition of unity method. II. Efficient cover construction and reliable integration. SIAM J. Sci. Comput. 23, 1655–1682 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Han, W., Meng, X.: Error analysis of the reproducing kernel particle method. Comput. Methods Appl. Mech. Eng. 190, 6157–6181 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jeong, W.Y., Moran, B., Chen, J.S.: Stabilized conforming nodal integration in the natural-element method. Int. J. Numer. Methods Eng. 60, 861–890 (2004)

    Article  MATH  Google Scholar 

  29. Li, S., Liu, W.K.: Meshfree and particle methods and their application. Appl. Mech. Rev. 55, 1–34 (2002)

    Article  Google Scholar 

  30. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 20, 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astrophys. J. 82, 1013 (1977)

    Google Scholar 

  32. Melenk, J.M.: On approximation in meshless methods. In: Blowey, J., Craig, A. (eds.) Frontiers in Numerical Analysis. Springer, Berlin (2005). Durham (2004)

    Google Scholar 

  33. Zhang, Q.: Effect of numerical integration on meshless methods. PhD thesis, Sun Yat-Sen University (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghui Zhang.

Additional information

Communicated by Ragnar Winther.

This research was partially supported by the China Scholarship Council through the State Scholarship Program and the Natural Science Foundation of China under grants 11001282 and 11071264.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q. Theoretical analysis of numerical integration in Galerkin meshless methods. Bit Numer Math 51, 459–480 (2011). https://doi.org/10.1007/s10543-010-0291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-010-0291-3

Keywords

Mathematics Subject Classification (2000)

Navigation