Skip to main content
Log in

Centrifugal LabTube platform for fully automated DNA purification and LAMP amplification based on an integrated, low-cost heating system

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper introduces a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA purification platform (LabTube). We demonstrate LabTube-based fully automated DNA purification of as low as 100 cell-equivalents of verotoxin-producing Escherichia coli (VTEC) in water, milk and apple juice in a laboratory centrifuge, followed by integrated and automated LAMP amplification with a reduction of hands-on time from 45 to 1 min. The heating system consists of two parallel SMD thick film resistors and a NTC as heating and temperature sensing elements. They are driven by a 3 V battery and controlled by a microcontroller. The LAMP reagents are stored in the elution chamber and the amplification starts immediately after the eluate is purged into the chamber. The LabTube, including a microcontroller-based heating system, demonstrates contamination-free and automated sample-to-answer nucleic acid testing within a laboratory centrifuge. The heating system can be easily parallelized within one LabTube and it is deployable for a variety of heating and electrical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

E. coli :

Escherichia coli

LAMP:

Loop-mediated isothermal DNA amplification

VTEC:

Verotoxin producing E. coli

DNA yield:

Extracted DNA copies, which here are quantified by qPCR

References

  • P.J. Asiello, A.J. Baeumner, Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 11(8), 1420–1430 (2011)

    Google Scholar 

  • A.J. Baeumner, Biosensors for environmental pollutants and food contaminants. Anal. Bioanal. Chem. 377(3), 434–445 (2003)

    Google Scholar 

  • A.J. Baeumner, R.N. Cohen, V. Miksic, J. Min, RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosens. Bioelectron. 18(4), 405–413 (2003)

    Google Scholar 

  • C. Beecher, 19 Ill with E. Coli in Oregon Raw Milk Outbreak. Food Safety News, www.foodsafetynews.com/2012/04/post-5/. Accessed 4 May 2013

  • D. Chen, M. Mauk, X. Qiu, C. Liu, J. Kim, S. Ramprasad et al., An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomed. Microdevices 12(4), 705–719 (2010)

    Google Scholar 

  • C.-H. Chiou, D. Jin Shin, Y. Zhang, T.-H. Wang, Topography-assisted electromagnetic platform for blood-to-PCR in a droplet. Biosens. Bioelectr. 50, 91–99 (2013)

    Google Scholar 

  • Y.-K. Cho, J.-G. Lee, J.-M. Park, B.-S. Lee, Y. Lee, C. Ko, One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7(5), 565–573 (2007)

    Google Scholar 

  • G.R. Duarte, C.W. Price, B.H. Augustine, E. Carrilho, J.P. Landers, Dynamic solid phase DNA extraction and PCR amplification in polyester-toner based microchip. Anal. Chem. 83(13), 5182–5189 (2011)

    Google Scholar 

  • Europäische Kommission, Verordnung der europäischen Kommission über mikrobiologische Kriterien für Lebensmittel, Milchverordnung (EU, Brussels, 2004), 6(3.3)

  • European Commission of Health and Consumer Protection, Opinion of the scientific committee on veterinary measures relating to public health on verotoxigenic E. coli (VTEC) in food stuffs (ECHCP, 2013), 1

  • P. Francois, M. Tangomo, J. Hibbs, E.J. Bonetti, C.C. Boehme, T. Notomi, M.D. Perkins, J. Schrenzel, Robustness of a loop‐mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol. Med. Microbiol. 62(1), 41–48 (2011)

    Google Scholar 

  • E. Fu, B. Lutz, P. Kauffman, P. Yager, Controlled reagent transport in disposable 2D paper networks. Lab Chip 10(7), 918–920 (2010)

    Google Scholar 

  • L. Gervais, E. Delamarche, Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9(23), 3330–3337 (2009)

    Google Scholar 

  • P. Gill, A. Ghaemi, Nucleic acid isothermal amplification technologies—a review. Nucleos Nucleot Nucl. 27(3), 224–243 (2008)

    Google Scholar 

  • Y. Hara-Kudo, J. Nemoto, K. Ohtsuka, Y. Segawa, K. Takatori, T. Kojima, M. Ikedo, Sensitive and rapid detection of Vero toxin-producing Escherichia coli using loop-mediated isothermal amplification. J. Med. Microbiol. 56(3), 398–406 (2007)

    Google Scholar 

  • J. Hill, S. Beriwal, I. Chandra, V.K. Paul, A. Kapil, T. Singh et al., Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli. J. Clin. Microbiol. 46(8), 2800–2804 (2008)

    Google Scholar 

  • M.M. Hoehl, P.J. Lu, P.A. Sims, A.H. Slocum, Rapid and robust detection methods for poison and microbial contamination. J. Agric. Food. Chem. 60(25), 6349–6358 (2012)

    Google Scholar 

  • H. Karch, P.I. Tarr, M. Bielaszewska, Enterohaemorrhagic Escherichia coli in human medicine. Int. J. Med. Microbiol. 295(6), 405–418 (2005)

  • M. Karle, J. Miwa, G. Czilwik, V. Auwärter, G. Roth, R. Zengerle, F. Von Stetten, Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab Chip 10(23), 3284–3290 (2010)

  • J.M. Karlsson, T. Haraldsson, S. Laakso, A. Virtanen, M. Maki, G. Ronan, W. Van Der Wijngaart, PCR on a PDMS-based microchip with integrated bubble removal. in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International. (ed.), vol. (IEEE, 2011), pp. 2215-2218

  • M.A. Karmali, V. Gannon, J.M. Sargeant, Verocytotoxinproducing Escherichia coli (VTEC). Vet. Microbiol. 140(3), 360–370 (2010)

  • A. Kloke, A. R. Fiebach, L. Drechsel, S. Zhang, S. Niekrawietz, M. Hoehl, R. Kneusel, K. Panthel, J. Steigert, F. von Stetten, R. Zengerle, N. Paust, Lab Chip, doi:10.1039/C3LC51261D, (2014)

  • G.J. Kost, Newdemics, public health, small-world networks, and point-of-care testing. Point Care 5(4), 138–144 (2006)

    Google Scholar 

  • O. Lazcka, F. Campo, F.X. Munoz, Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22(7), 1205–1217 (2007)

    Google Scholar 

  • J.-H. Lee, Y. Park, J.R. Choi, E.K. Lee, H.-S. Kim, Comparisons of three automated systems for genomic DNA extraction in a clinical diagnostic laboratory. Yonsei Med. J. 51(1), 104–110 (2010)

    Google Scholar 

  • L.A. Legendre, J.M. Bienvenue, M.G. Roper, J.P. Ferrance, J.P. Landers, A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples. Anal. Chem. 78(5), 1444–1451 (2006)

    Google Scholar 

  • P. Leonard, S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty, R. O’kennedy, Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Technol. 32(1), 3–13 (2003)

  • K.J. Liu, M.V. Brock, I.-M. Shih, T.-H. Wang, Decoding circulating nucleic acids in human serum using microfluidic single molecule spectroscopy. J. Am. Chem. Soc. 132(16), 5793–5798 (2010)

    Google Scholar 

  • C. Liu, M.G. Mauk, R. Hart, X. Qiu, H.H. Bau, A self-heating cartridge for molecular diagnostics. Lab Chip 11(16), 2686–2692 (2011)

    Google Scholar 

  • J.A. Lounsbury, A. Karlsson, D.C. Miranian, S.M. Cronk, D.A. Nelson, J. Li et al., From sample to PCR product in under 45 minutes: a polymeric integrated microdevice for clinical and forensic DNA analysis. Lab Chip 13(7), 1384–1393 (2013)

    Google Scholar 

  • N.W. Lucchi, A. Demas, J. Narayanan, D. Sumari, A. Kabanywanyi, S.P. Kachur, J.W. Barnwell, V. Udhayakumar, Real-time fluorescence loop mediated isothermal amplification for the diagnosis of malaria. PLoS One 5(10), e13733 (2010)

  • S. Lutz, P. Weber, M. Focke, B. Faltin, J. Hoffmann, C. Müller et al., Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10(7), 887–893 (2010)

    Google Scholar 

  • A.W. Martinez, S.T. Phillips, G.M. Whitesides, E. Carrilho, Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82(1), 3–10 (2009)

  • L. Matlock-Colangelo, A.J. Baeumner, Recent progress in the design of nanofiber-based biosensing devices. Lab Chip 12(15), 2612–2620 (2012)

    Google Scholar 

  • P. Merel, Perspectives on molecular diagnostics automation. J. Assoc. Lab. Autom. 10(5), 342–350 (2005)

    Google Scholar 

  • J. Min, A.J. Baeumner, Highly sensitive and specific detection of viable Escherichia coli in drinking water. Anal. Biochem. 303(2), 186–193 (2002)

    Google Scholar 

  • R. Mohan, A. Mukherjee, S.E. Sevgen, C. Sanpitakseree, J. Lee, C.M. Schroeder, P.J. Kenis, A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosens. Bioelectron. 49, 118–125(2013)

    Google Scholar 

  • S.R. Nugen, A. Baeumner, Trends and opportunities in food pathogen detection. Anal. Bioanal. Chem. 391(2), 451–454 (2008)

    Google Scholar 

  • S. Park, Y. Zhang, S. Lin, T.-H. Wang, S. Yang, Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol. Adv. 29(6), 830–839 (2011)

    Google Scholar 

  • K. Phillips, N. Mccallum, L. Welch, A comparison of methods for forensic DNA extraction: Chelex-100® and the QIAGEN DNA Investigator Kit (manual and automated). Forensic Sci. Int. Genet. 6(2), 282–285 (2012)

    Google Scholar 

  • Ralf Hottmeyer Gmbh, Vergleichslisten und Informationen für Knopfzellen und Batterien. Würselen, 2012

  • B.R. Schudel, M. Tanyeri, A. Mukherjee, C.M. Schroeder, P.J. Kenis, Multiplexed detection of nucleic acids in a combinatorial screening chip. Lab Chip 11(11), 1916–1923 (2011)

    Google Scholar 

  • T. Schuurman, A. Roovers, W.K. Van Der Zwaluw, A.A. Van Zwet, L.J. Sabbe, A.M.D. Kooistra-Smid, Y.T. Van Duynhoven, Evaluation of 5′-nuclease and hybridization probe assays for the detection of shiga toxinproducing Escherichia coli in human stools. J. Microbiol. Meth. 70(3), 406–415 (2007)

    Google Scholar 

  • S. Takayama, J.C. Mcdonald, E. Ostuni, M.N. Liang, P.J. Kenis, R.F. Ismagilov, G.M. Whitesides, Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc. Natl. Acad. Sci. U. S. A. 96(10), 5545–5548 (1999)

    Google Scholar 

  • V. Velusamy, K. Arshak, O. Korostynska, K. Oliwa, C. Adley, An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol. Adv. 28(2), 232–254 (2010)

    Google Scholar 

  • J.R. Waters, J.C. Sharp, V.J. Dev, Infection caused by Escherichia coli O157: H7 in Alberta, Canada, and in Scotland: a five-year review, 1987–1991. Clin. Inf. Dis. 19(5), 834–843 (1994)

    Google Scholar 

  • B. Weigl, G. Domingo, P. Labarre, Towards nonand minimally instrumented, microfluidics-based diagnostic devices. J. Gerlach, Lab Chip 8(12), 1999–2014 (2008a)

  • B.H. Weigl, G. Domingo, J. Gerlach, D. Tang, D. Harvey, N. Talwar et al., Noninstrumented nucleic acid amplification assay. MOEMS-MEMS 2008 (2008b)

  • J. Wen, L.A. Legendre, J.M. Bienvenue, J.P. Landers, Purification of nucleic acids in microfluidic devices. Anal. Chem. 80(17), 6472–6479 (2008)

    Google Scholar 

  • P. Yager, G.J. Domingo, J. Gerdes, Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 10, 107–144 (2008)

    Google Scholar 

  • D.J. You, K.J. Geshell, J.-Y. Yoon, Direct and sensitive detection of foodborne pathogens within fresh produce samples using a field-deployable handheld device. Biosens. Bioelectron. 28(1), 399–406 (2011)

    Google Scholar 

  • C.-Y. Zhang, H.-C. Yeh, M.T. Kuroki, T.-H. Wang, Single-quantum-dot-based DNA nanosensor. Nature Mat. 4(11), 826–831 (2005)

    Google Scholar 

  • Y. Zhang, S. Park, K. Liu, J. Tsuan, S. Yang, T.-H. Wang, A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification. Lab Chip 11(3), 398–406 (2011)

    Google Scholar 

  • P. Zuo, X. Li, D.C. Dominguez, B.-C. Ye, A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for onestep multiplexed pathogen detection. Lab Chip 13(19), 3921–3928 (2013)

    Google Scholar 

Download references

Acknowledgments

We thank the Harvard-MIT Division of Health Sciences and Technology, as well as the Legatum Center at MIT for support. Thanks to the CR/ARY2 team at Robert Bosch GmbH, particularly F. Laermer, B. Faltin, J. Hoffmann and K. Lemuth. We thank the staff at Nesch Engineering for the productive collaboration, and H.-E.Manneck from Mast Diagnostica for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Melanie M. Hoehl or Alexander H. Slocum.

Additional information

Alexander H. Slocum and Juergen Steigert contributed equally to this work.

Electronic supplementary material

The ESI contains details on the LAMP stability testing, the power supply, heater selection and control, as well as LabTube extraction of whole E.coli cells.

ESM 1

(PDF 726 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoehl, M.M., Weißert, M., Dannenberg, A. et al. Centrifugal LabTube platform for fully automated DNA purification and LAMP amplification based on an integrated, low-cost heating system. Biomed Microdevices 16, 375–385 (2014). https://doi.org/10.1007/s10544-014-9841-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9841-9

Keywords

Navigation