Skip to main content

Advertisement

Log in

On the Turbulence in the Upper Part of the Low-Level Jet: An Experimental and Numerical Study

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The characteristics of low-level jets (LLJ) observed at the “Centro de Investigacion de la Baja Atmósfera” (CIBA) site in Spain are analysed, focussing on the turbulence generated in the upper part of the jet, a feature that is still to be thoroughly understood. During the Stable Boundary Layer Experiment in Spain (SABLES) 1998, captive balloon soundings were taken intensively, and their analyses have highlighted the main characteristics of the jet’s wind and temperature structure, leading to a composite profile. There are indications that the turbulence has a minimum at the level of the wind maximum, with elevated turbulence in a layer at a height between two and three times that of the LLJ maximum, but no direct measurements of turbulence were available at these heights. In September 2001, a 100-m tower at the same site was re-instrumented to give turbulence measurements up to 96.6 m above ground level. All occurrences of LLJ below this height between September 2002 and June 2003 have been selected and significant turbulence above the LLJ has been found. Simulations with a single-column turbulence kinetic energy model have been made in order to further investigate the generation of elevated turbulence. The results correlate well with the measurements, showing that in the layer above the LLJ, where there is significant shear and weakly stable stratification, conditions are conducive to the development of turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas E. L., Claffey K. J. and Makshtas A. P. (2000). ‘Low-level Atmospheric Jets and Inversion over the Western Weddell Sea’. Boundary-Layer Meteorol. 97: 459–486

    Article  Google Scholar 

  • Arritt R. W., Rink T. D., Segal M., Todey D. P. and Clark C. A. (1997). ‘The Great Plains Low-level Jet during the Warm Season of 1993’. Mon. Wea. Rev. 125: 2176–2192

    Article  Google Scholar 

  • Banta R. M., Senff C. J., White A. B., Trainder M., McNider R. T., Valente R. J., Mayour S. D., Alvarez T. M. H. R. J., Parrish D. and Fehsenfeld F. C. (1998). ‘Day-Time Buildup and Nightime Transport of Urban Ozone in the Boundary Layer during a Stagnation Episode’. J. Geophys. Res. 103: 22519–22544

    Article  Google Scholar 

  • Banta R. M., Newsom R. K., Lundquist J. K., Pichugina Y. L., Coulter R. L. and Mahrt L. (2002). ‘Nocturnal Low-Level Jet characteristics over Kansas during CASES-99’. Boundary-Layer Meteorol. 105: 221–252

    Article  Google Scholar 

  • Blackadar A. K. (1957). ‘Boundary Layer Wind Maxima and their Significance for the Growth of Nocturnal Inversions’. Bull. Amer. Meteorol. Soc. 38: 282–290

    Google Scholar 

  • Bougeault P. and Lacarrère P. (1989). ‘Parameterization of Orography-induced Turbulence in a Mesobeta-Scale Model’. Mon. Wea. Rev. 117(8): 1872–1890

    Article  Google Scholar 

  • Conangla, L., Cuxart, J., and Terradellas, E.: 2002, ‘One-column Simulations of the SBL Observed during SABLES-98: Importance of the Surface Fluxes and the Dynamic Forcings’, Preprints 15th Symposium on Boundary Layers and Turbulence, Wageningen, The Netherlands, July 15–19: (2002) American Meteorological Society, 45 Beacon St., Boston, MA, pp. 313–314

  • Cuxart J., Bougeault P. and Redelsperger J. L. (2000a). ‘A turbulence Scheme Allowing for Mesoscale and Large-eddy Simulations’. Quart. J. Roy. Meteorol. Soc. 126: 1–30

    Article  Google Scholar 

  • Cuxart J., Yagüe C., Morales G., Terradellas E., Orbe J., Calvo J., Fernández A., Soler M. R., Infante C., Buenestado P., Espinalt A., Joergensen H. E., Rees J. M., Vilà J., Redondo J. M., Cantalapiedra I. R. and Conangla L. (2000b). ‘Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES 98) A Report’. Boundary-Layer Meteorol. 96: 337–370

    Article  Google Scholar 

  • Cuxart, J., Holtslag, A. A. M., Beare, R., Bazile, E., Beljaars, A., Cheng, A., Conangla, L., Ek, M., Freedman, F., Hamdi, R., Kerstein, A., Kitagawa, H., Lenderink, G., Lewellen, D., Mailhot, J., Mauritsen, T., Perov, V., Schayes, G., Steeneveld, G.-J., Svensson, G., Taylor, P., Wunsch, S., Weng, W., and Xu, K. M.: 2006, ‘Single-column Model Intercomparison for a Stably Stratified Atmospheric Boundary Layer’, Boundary-Layer Meteorol., in press

  • Darby, L. S., Banta, R. M., Brewer, W. A., Neff, W. D., Marchbanks, R. D., McCarty, B. J., Senff, C. J., White, A. B., Angevine, W. M., and Williams, E. J.: 2002, ‘Vertical Variations in O3 Concentrations before and after a Gust Front Passage’, J. Geophys. Res. 107 (D13), 4174, doi 10.1029/2001JD000996

  • Deardorff J. W. (1980). ‘Stratocumulus-capped Mixed Layers Derived from a Three-dimensional Model’. Boundary-Layer Meteorol. 18: 495–527

    Article  Google Scholar 

  • Holton J. R. (1967). ‘The Diurnal Boundary Layer Wind Oscillation above Sloping Terrain’. Tellus 19: 199–205

    Article  Google Scholar 

  • Holtslag A. A. M. (2003). ‘GABLS Initiates Intercomparison for Stable Boundary Layers’. GEWEX News 13: 7–8

    Google Scholar 

  • Källstrand B. (1998). ‘Low Level Jets in a Marine Boundary Layer during Spring’. Contrib. Atmos. Phys. 71: 359–373

    Google Scholar 

  • Kolmogorov A. N. (1942). ‘Equations of Turbulent Motion of an Incompressible Fluid’. IZV. Akad. Nauk, SSSR, Ser. Fiz. 6: 56–58

    Google Scholar 

  • Lafore J. P., Stein J., Asencio N., Bougeault P., Ducrocq V., Duron J., Fisher C., Héreil P., Mascart P., Masson V., Pinty J. P., Redelsperger J. L., Richard E. and Vilà-Guerau de Arellano J. (1998). ‘The Meso-NH Atmospheric Simulation System. Part I: Adiabatic Formulation and Control Simulation’. Ann. Geophys. 16: 90–109

    Article  Google Scholar 

  • Mahrt L. (1981a). ‘The Early Evening Boundary Layer Transition’. Quart. J. Roy. Meteorol. Soc. 107: 329–343

    Article  Google Scholar 

  • Mahrt L. (1981b). ‘Modelling the Depth of the Stable Boundary-Layer’. Boundary-Layer Meteorol. 21: 3–9

    Article  Google Scholar 

  • Mahrt L., Heald R. C., Lenschow D. H., Stankov B. B. and Troen I. B. (1979). ‘An Observational Study of the Structure of the Nocturnal Boundary Layer’. Boundary-Layer Meteorol. 17: 247–264

    Article  Google Scholar 

  • Mahrt L., Sun J., Blumen W., Delany T. and Oncley S. (1998). ‘Nocturnal Boundary-Layer Regimes’. Boundary-Layer Meteorol. 88: 255–278

    Article  Google Scholar 

  • Mahrt L. and Vickers D. (2003). ‘Formulation of Turbulent Fluxes in the Stable Boundary Layer’. J. Atmos. Sci. 60(20): 2538–2548

    Article  Google Scholar 

  • Parker M. J. and Raman S. (1993). ‘A Case Study of the Nocturnal Boundary Layer over a Complex Terrain’. Boundary-Layer Meteorol. 66: 303–324

    Article  Google Scholar 

  • Pielke R. A. (2002). Mesoscale Meteorological Modeling. Academic Press, USA, 676 pp

    Google Scholar 

  • Sánchez, E. and Cuxart, J.: 2004, `A Buoyancy-based Mixing Length Proposal for Cloudy Boundary Layers', Quart. J. Roy. Meteorol. Soc., 130, 3385–3404

    Google Scholar 

  • Smedman A. S. (1988). ‘Observations of a Multi-Level Turbulence Structure in a Very Stable Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 44: 231–253

    Article  Google Scholar 

  • Smedman A. S., Tjernstrom M. and Högström U. (1993). ‘Analysis of the Turbulence Structure of a Marine Low-Level Jet’. Boundary-Layer Meteorol. 66: 105–126

    Article  Google Scholar 

  • Stull R. B. (1988). An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

    Google Scholar 

  • Terradellas, E. and Cuxart, J.: 2001, ‘Aplicación de un modelo unidimensional para predicciones en el aeropuerto de Madrid-Barajas’, V Simposio Nacional de Predicción del INM, Madrid. ISBN: 84-8320-192-5. CD available at Instituto Nacional de Meteorología, Leonardo Prieto Castro, 8, 28040 Madrid, Spain

  • Unden, P., Rontu, L., Jarvinen, H., Lynch, P., Calvo, J., Cats, G., Cuxart, J., Eerola, K., Fortelius, C., Garcia- Moya, J. A., Jones, C., Lenderink, G., McDonald, A., McGrath, R., Navascues, B., Nielsen, N. W., Odegaard, V., Rodriguez, E., Rummukainen, M., Room, R., Sattler, K., Saas, B. H., Savijarvi, H., Schreur, B. W., Sigg, R., The, H., and Tijm, A.: 2002, HIRLAM-5 Scientific Documentation, HIRLAM-5 Project, c/o Per Unden SMHI, S-606 76 Norrköping, SWEDEN

  • Vukelic, B. and Cuxart, J. 2000, ‘One-dimensional Simulations of the Stable Boundary-layer as Observed in SABLES98’, Preprints 14th Symposium on Boundary Layers and Turbulence, Aspen, Colorado, August 7–11: 2000, American Meteorological Society, 45 Beacon St., Boston, MA, pp. 579–580

  • Whiteman C. D., Bian X. and Zhong S. (1997). ‘Low-level Jet Climatology from Enhanced Rawinsonde Observations at a Site in the Southern Great Plains’. J. Appl. Meteorol. 36: 1363–1376

    Article  Google Scholar 

  • Wu Y. and Raman S. (1997). ‘Effect of Land-use Pattern on the Development of Low-Level Jets’. J. Appl. Meteorol. 36: 573–590

    Article  Google Scholar 

  • Wu Y. and Raman S. (1998). ‘The Summer Time Great Plains Low-Level Jet and the Effect of its Origin on Moisture Transport’. Boundary-Layer Meteorol. 88: 445–466

    Article  Google Scholar 

  • Zhong S., Fast J. D. and Bian X. (1996). ‘A Case Study of the Great Plains Low-Level Jet using Profiler Network Data and a High-resolution Mesoscale Model’. Mon. Wea. Rev. 124: 785–806

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Conangla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conangla, L., Cuxart, J. On the Turbulence in the Upper Part of the Low-Level Jet: An Experimental and Numerical Study. Boundary-Layer Meteorol 118, 379–400 (2006). https://doi.org/10.1007/s10546-005-0608-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-0608-y

Keywords

Navigation