Skip to main content
Log in

Determination of the convective boundary-layer height with laser remote sensing

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Different methods to determine the height of the convective boundary layer from lidar measurements are described and compared. The differences in either aerosol backscatter or in humidity between the boundary layer and the free troposphere are used, and either the variance or the gradient profile of the parameter under study is evaluated. On average the different methods are in very good agreement. Temporal resolution of the gradient methods is very high, on the order of seconds, but often there is an ambiguity in the choice of the “relevant” minimum in the gradient that corresponds to the boundary-layer height. This is avoided by combining the variance and the gradient methods, using the result of the variance analysis as an indicator for the region where the minimum of the gradient is sought. The combined method is useful for automated determination of the boundary-layer height at least under convective conditions. Aerosol backscatter is found to be as good an indicator for boundary-layer air as humidity, so a relatively simple backscatter lidar is sufficient for determination of the boundary-layer height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atmospheric Radiation Measurement (ARM) Program Fall (2000) Water Vapor IOP. http://www.arm.gov/iops/2000/sgp2000fallwv/wv.html, 2000

  • Beyrich, F., Adam, W. K., Bange, J., Behrens, K., Berger, F. H., Bernhofer, C., Bösenberg, J., Dier, H., Foken, T., Gdecke, M., Grsdorf, U., Gldner, J., Hennemuth, B., Heret, C., Huneke, S., Kohsiek, W., Lammert, A., Lehmann, V., Leiterer, U., Leps, J.-P., Liebethal, C., Lohse, H., Ldi, A., Mauder, M., Meijinger, W.M.L., Mengelkamp, H.-T., Queck, R., Richter, S.H., Spie, T., Stiller, B., Tittebrand, A., Weisensee, U., and Zittel P.: (2004), Verdunstung über einer heterogenen Landoberfläche – Das LITFASS-2003 Experiment, Ein Bericht. Arbeitsergebnisse Nr. 79, Deutscher Wetterdienst, Offenbach, Deutschland, ISSN 1430-0281

  • Bösenberg J. (1998). ‘Ground-Based Differential Absorption Lidar for Water-vapor and Temperature Profiling: Methodology’. Appl.Optics 37, 3845–3860

    Article  Google Scholar 

  • Bösenberg, J., Matthias, V., Amodeo, A., Amoiridis, V., Ansmann, A., Baldasano, J. M., Balin, I., Böckmann, C., Boselli, A., Carlsson, G., Chaykovski, A., Chourdakis, G., Comeron, A., DeTomasi, F., Eixmann, R., Freudenthaler, V., Giehl, H., Grigorov, I., Hågård, A., Iarlori, M., Kirsche, A., Kolarov, G., Komguem, L. and Kreipl, S., Kumpf, W., Larchevêque, G., Linne, H., Matthey, R., Mattis, I., Mekler, A., Mironova, I., Mitev, V., Mona, L., Müller, D., Music, S., Nickovic, S., Pandolfi, M., Papayannis, A., Pappalardo, G., Pelon, J., Peres, C., Perrone, R.M., Persson, R., Resendes, D.P., Rizi, V., Rocadenbosch, F., Rodriguez, J., Sauvage, L., Schneidenbach, L., Schumacher, R., Shcherbakov, V., Simeonov, V., Sobolewski, P., Spinelli, N., Stachlewska, I., Stoyanov, D., Trickl, T., Tsaknakis, G., Vaughan, G., Wandinger, U., Wang, X., Wiegner, M., Zavrtanik M., and Zerefos, C.: (2003), ‘EARLINET: ‘A European Aerosol Research Lidar Network to Establish an Aerosol Climatology’, Report of the Max-Planck-Institute for Meteorology, Hamburg, Germany, pp. 348

  • Cohn S.A., Angevine W.M. (1999). ‘Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars’. J. Appl. Meteorol. 39, 1233–1247

    Article  Google Scholar 

  • Davis K.J., Gamage N., Hagelberg C.R., Kiemle C., Lenschow D.H. Sullivan P.P. (2000). ‘An Objective Method for Deriving Atmospheric Structure from Airborne Lidar Observations’. J. Atmos. Oceanic Tech. 17, 1455–1468

    Article  Google Scholar 

  • Ertel, K.: (2004), ‘Application and Development of Water Vapor DIAL Systems’, Dissertation, Universität Hamburg, http://www.sub.uni-hamburg.de/opus/volltexte/2004/2027

  • Flamant C., Pelon J., Flamant P.H., Durand P. (1997). Lidar Determination of the Entrainment Zone Thickness at the Top of the Unstable Marine Atmospheric Boundary Layer’. Boundary-Layer Meterol. 83, 247–284

    Article  Google Scholar 

  • Fochesatto G.J., Drobinski P., Flamant C., Guedalia D., Sarrat C., Flamant P.H., Pelon J. (2001). ‘Evidence of Dynamical Coupling between the Residual Layers and the Developing Convective Boundary Layer’. Boundary-Layer Meteorol. 99, 451–464

    Article  Google Scholar 

  • Joffre S.M., Kankgas M., Heikinheimo M., Kitaigorodskii S.A. (2001). ‘Variability of the Stable and Unstable Atmospheric Boundary-layer height and its Scales over a Boreal Forest’. Boundary-Layer Meteorol. 99, 429–450

    Article  Google Scholar 

  • Lammert, A.: (2004), Untersuchung der turbulenten Grenzschicht mit Laserfernerkundung. Dissertation, Universität Hamburg, http://www.sub.uni-hamburg.de/opus/volltexte/2004/2103

  • Menut L., Flamant C., Pelon J., Flamant P.H. (1999). ‘Urban Boundary-Layer Height Determination from Lidar Measurements over the Paris Area’. Appl. Optics. 38, 945–954

    Google Scholar 

  • Schwiesow R.L. (1986). Lidar Measurement of Boundary-Layer Variables. In: Lenschow D.H. (ed). Probing the Atmospheric Boundary Layer. AMS, Boston, pp. 139–162

    Google Scholar 

  • Seibert P., Beyrich F., Gryning S.E., Joffre S., Rasmussen A., Tercier P. (2000). Review and Intercomparison of Operational Methods for the Determination of the Mixing Height. Atmos. Environ. 34, 1001–1027

    Article  Google Scholar 

  • Steyn D.G., Baldi M., Hoff R.M. (1999). The Detection of Mixing Layer Depth and Entrainment Zone Thickness from Lidar Backscatter Profiles. J. Atmos. Oceanic. Tech. 16(7): 953–959

    Article  Google Scholar 

  • Stull R.B. (1988). An Introduction to Boundary-Layer Meteorology. Kluwer Acad. Publ., Dordrecht, Boston, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lammert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lammert, A., Bösenberg, J. Determination of the convective boundary-layer height with laser remote sensing. Boundary-Layer Meteorol 119, 159–170 (2006). https://doi.org/10.1007/s10546-005-9020-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-9020-x

Keywords

Navigation