Skip to main content

Advertisement

Log in

Heterogeneous Nocturnal Cooling in a Large Basin Under Very Stable Conditions

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Large basins with relatively wide floors experience heterogeneous nocturnal cooling due to the diversity of the topography and the land use within the basin. Near mountain ranges the drainage flows prevail, but in low areas, river valleys or embedded plateaux, the actual rates of cooling differ as does the behaviour of the local flows in the first few metres above the surface. In this study, the temporal and spatial heterogeneity of the surface cooling is inspected through the analysis of satellite radiative surface temperature, data from a meteorological network and a tall tower. The organisation of the flow within the basin is also studied by means of a high-resolution numerical mesoscale simulation. Although the basin cools almost as a unit, there exists a large diversity of local regimes. Vertical profiles from the mesoscale simulation are analysed and grouped according to their wind structure and stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bravo M, Mira A, Soler MR, Cuxart J (2008) Intercomparison and evaluation of MM5 and Meso-NH mesoscale models in the stable boundary layer. Boundary-Layer Meteorol 128: 77–101

    Article  Google Scholar 

  • Bromwich DH (1989) Satellite analyses of Antarctic katabatic wind behavior. Bull Am Meteorol Soc 70: 738–749

    Article  Google Scholar 

  • Clements CB, Whiteman CD, Horel JD (2003) Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah. J Appl Meteorol 42: 752–768

    Article  Google Scholar 

  • Coll C, Caselles V (1997) A split-window algorithm for land surface temperature from advanced very high resolution radiometer data: validation and algorithm comparison. J Geophys Res 102: 697–713

    Article  Google Scholar 

  • Coll C, Caselles V, Sobrino JA, Valor E (1994) On the atmospheric dependence of the split-window equation for land surface temperature. Int J Remote Sens 15: 105–122

    Article  Google Scholar 

  • Conangla L, Cuxart J (2006) On the turbulence in the upper part of the low-level jet: an experimental and numerical study. Boundary-Layer Meteorol 118: 379–400

    Article  Google Scholar 

  • Conangla L, Cuxart J, Soler MR (2008) Characterisation of the nocturnal boundary layer at a site in northern Spain. Boundary-Layer Meteorol 128: 255–276

    Article  Google Scholar 

  • Cuxart J (2008) Nocturnal basin low-level jets: an integrated study. Acta Geophys Pol 56: 100–113

    Article  Google Scholar 

  • Cuxart J, Yagüe C, Morales G, Terradellas E, Orbe J, Calvo J, Fernandez A, Soler MR, Infante C, Buenestado P, Espinalt A, Joergensen HE, Rees JM, Vilá J, Redondo JM, Cantalapiedra IR, Conangla L (2000a) Stable atmospheric boundary-layer experiment in Spain (SABLES 98): a report. Boundary-Layer Meteorol 96: 337–370

    Article  Google Scholar 

  • Cuxart J, Bougeault P, Redelsperger J-L (2000b) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J Roy Meteorol Soc 126: 1–30

    Article  Google Scholar 

  • Cuxart J, Jiménez MA, Martínez D (2007) Nocturnal mesobeta basin and katabatic flows on a midlatitude island. Mon Weather Rev 135: 918–932

    Article  Google Scholar 

  • Edwards JM (2009) Radiative processes in the stable boundary layer: part II. The development of the nocturnal boundary layer. Boundary-Layer Meteorol 131: 127–146

    Article  Google Scholar 

  • Gopalakrishnan SG, Maithili S, McNider RT, Singh MP (1998) Study of radiative and turbulent processes in the stable boundary layer under weak wind conditions. J Atmos Sci 55: 954–960

    Article  Google Scholar 

  • Grisogono B, Oerlemans J (2001) Katabatic flow: analytic solution for gradually varying eddy diffusivities. J Atmos Sci 58: 3349–3354

    Article  Google Scholar 

  • Heymann Y, Steenmans C, Croissille G, Bossard M (1994) Corine land cover technical guide. Office for Official Publications of the European Communities, Luxembourg, 136 pp

  • Jiménez MA, Mira A, Cuxart J, Luque A, Alonso S, Guijarro JA (2008) Verification of a clear-sky mesoscale simulation using satellite-derived surface temperatures. Mon Weather Rev 136: 5148–5161

    Article  Google Scholar 

  • Lafore JP, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fisher C, Héreil P, Mascart P, Pinty JP, Redelsperger J-L, Richard E, Vilá-Gueraude Arellano J (1998) The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulation. Ann Geophys 16: 90–109

    Article  Google Scholar 

  • Lundquist JD, Pepin N, Rochford C (2008) Automated algorithm for mapping regions of cold-air pooling in complex terrain. J Geophys Res 113: D22107-1–D22107-15

    Article  Google Scholar 

  • Mahrt L, Sun J, Blumen W, Delany T, Oncley S (1998) Nocturnal boundary-layer regimes. Boundary-Layer Meteorol 88: 255–278

    Article  Google Scholar 

  • Martínez D, Cuxart J (2009) Assessment of the hydraulic slope flow approach using a mesoscale model. Acta Geophys Pol 57: 882–903

    Article  Google Scholar 

  • Michelson SA, Bao JW (2008) Sensitivity of low-level winds simulated by the WRF model in California’s Central Valley to uncertainties in the large-scale forcing and soil initialization. J Appl Meteorol Clim 47: 3131–3149

    Article  Google Scholar 

  • Morcrette J-J (1990) Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon Weather Rev 118: 847–873

    Article  Google Scholar 

  • Neff WD, King CW (1989) The accumulation and pooling of drainage flows in a large basin. J Appl Meteorol 28: 518–529

    Article  Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117: 536–549

    Article  Google Scholar 

  • Prata AJ, Caselles V, Coll C, Sobrino JA, Otllé C (1995) Thermal remote sensing of land surface temperature from satellites: current status and future prospects. Remote Sens Environ 12: 175–224

    Google Scholar 

  • Savijärvi H (2006) Radiative and turbulent heating rates in the clear-air boundary layer. Q J Roy Meteorol Soc 132: 147–161

    Article  Google Scholar 

  • Terradellas E, Morales G, Cuxart J, Yagüe C (2001) Wavelet methods: application to the study of the stable atmospheric boundary layer under non-stationary conditions. Dyn Atmos Oceans 34: 225–244

    Article  Google Scholar 

  • Viana S, Yagüe C, Maqueda G (2009) Propagation and effects of a mesoscale gravity wave over a weakly-stratified nocturnal boundary layer during the SABLES2006 field campaign. Boundary-Layer Meteorol 133: 165–188

    Article  Google Scholar 

  • Vosper SB, Brown AR (2008) Numerical simulations of sheltering in valleys: the formation of nighttime cold-air pools. Boundary-Layer Meteorol 127: 429–448

    Article  Google Scholar 

  • Whiteman CD, Bian X, Zhong S (1999) Wintertime evolution of the temperature inversion in the Colorado Plateau basin. J Appl Meteorol 38: 1103–1117

    Article  Google Scholar 

  • Whiteman CD, Haiden T, Pospichal B, Eisenbach S, Steinacker R (2004) Minimum temperatures, diurnal temperature ranges, and temperature inversions in limestone sinkholes of different sizes and shapes. J Appl Meteorol 43: 1224–1236

    Article  Google Scholar 

  • Whiteman CD, De Wekker SFL, Haiden T (2007) Effect of dewfall and frostfall on nighttime cooling in a small, closed basin. J Appl Meteorol Clim 46: 3–13

    Article  Google Scholar 

  • Wolyn PG, McKee TB (1989) Deep stable layers in the intermountain western United States. Mon Weather Rev 117: 461–472

    Article  Google Scholar 

  • Zängl G (2005a) Formation of extreme cold-air pools in elevated sinkholes: an idealized numerical process study. Mon Weather Rev 133: 925–941

    Article  Google Scholar 

  • Zängl G (2005b) Dynamical aspects of wintertime cold-air pools in an alpine valley system. Mon Weather Rev 133: 2721–2740

    Article  Google Scholar 

  • Zhong S, Whiteman CD, Bian X, Shaw WJ, Hubble JM (2001) Meteorological processes affecting the evolution of a wintertime cold air pool in the Columbia basin. Mon Weather Rev 129: 2600–2613

    Article  Google Scholar 

  • Zhong S, Whiteman CD, Bian X (2004) Diurnal evolution of three-dimensional wind and temperature structure in California’s Central valley. J Appl Meteorol 43: 1679–1699

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Martínez.

Additional information

L. Mahrt on leave from Oregon State University, Corvallis, OR, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, D., Jiménez, M.A., Cuxart, J. et al. Heterogeneous Nocturnal Cooling in a Large Basin Under Very Stable Conditions. Boundary-Layer Meteorol 137, 97–113 (2010). https://doi.org/10.1007/s10546-010-9522-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-010-9522-z

Keywords

Navigation