Skip to main content
Log in

The Growth of the Planetary Boundary Layer at a Coastal Site: a Case Study

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A lidar system is used to determine the diurnal evolution of the planetary boundary layer (PBL) height on a summer day characterized by anticyclonic conditions. The site is located some 15 km distant from the sea, on a peninsula in south-east Italy. Contrary to expectations, the PBL height, after an initial growth consequent to sunrise, ceases to increase about 2 h before noon and then decreases and stabilizes in the afternoon. An interpretation of such anomalous behaviour is provided in terms of trajectories of air parcels towards the lidar site, which are influenced by the sea breeze, leading to a transition from a continental boundary layer to a coastal internal boundary layer. The results are analyzed using mesoscale numerical model simulations and a simple model that allows for a more direct interpretation of experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbs DJ, Physick WL (1992) Sea-breeze observations and modelling: a review. Aust Meteorol Mag 41: 7–19

    Google Scholar 

  • Baars H, Ansmann A, Engelmann R, Althausen D (2008) Continuous monitoring of the boundary-layer top with lidar. Atmos Chem Phys 8: 7281–7296

    Article  Google Scholar 

  • Batchvarova E, Gryning SE (1991) Applied model for the growth of the daytime mixed layer. Boundary-Layer Meteorol 56: 261–274

    Article  Google Scholar 

  • Batchvarova E, Gryning SE (1998) Wind climatology, atmospheric turbulence and internal boundary-layer development in Athens during the MEDCAPHOT-TRACE experiment. Atmos Environ 32: 2055–2069

    Article  Google Scholar 

  • Batchvarova E, Cai X, Gryning SE, Steyn D (1999) Modelling internal boundary layer development in a region with a complex coastline. Boundary-Layer Meteorol 90: 1–20

    Article  Google Scholar 

  • Beljaars ACM, Betts AK (1993) Validation of the boundary layer representation in the ECMWF model. In: Validation of the models over Europe, ECMWF seminar proceedings vol 2. Reading, UK, pp 159–195

  • Berge E, Jakobsen HA (1998) A regional scale multi-layer model for the calculation of long-term transport and deposition of air pollution in Europe. Tellus 50: 205–223

    Article  Google Scholar 

  • Boselli A, Armenante M, D’Avino L, D’Isidoro M, Pisani G, Spinelli N, Wang X (2009) Atmospheric aerosol characterization over Naples during 2000–2003 EARLINET project: planetary boundary-layer evolution and layering. Boundary-Layer Meteorol 132: 151–165

    Article  Google Scholar 

  • Bravo M, Mira T, Soler MR, Cuxart J (2008) Intercomparison and evaluation of MM5 and Meso-NH mesoscale models in the stable boundary layer. Boundary-Layer Meteorol 128: 77–101

    Article  Google Scholar 

  • Carson DJ (1973) The development of a dry inversion-capped convectively unstable boundary layer. Q J Roy Meteorol Soc 99: 450–467

    Article  Google Scholar 

  • Case JL, Manobianco J, Dianic AV, Wheeler MM, Harms DE, Parks CR (2002) Verification of high-resolution rams forecasts over east-central florida during the 1999 and 2000 summer months. Weather Forecast 17: 1133–1151

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. part I: Model description and implementation. Mon Weather Rev 129: 569–585

    Article  Google Scholar 

  • Colby FP Jr (2004) Simulations of the New England sea breeze: the effect of grid spacing. Weather Forecasting 19: 277–285

    Article  Google Scholar 

  • Courant R, Hilbert D (1962) Methods of Mathematical Physics, vol II. Interscience, New York, p 830

    Google Scholar 

  • Dayan U, Heffter J, Miller J (1996) Seasonal distribution of the boundary layer depths over the Mediterranean basin. In: Guerzoni S, Chester R (eds) The impact of desert dust across the Mediterranean. Kluwer, Dordrecht, pp 103–112

    Google Scholar 

  • De Tomasi F, Perrone MR (2003) Lidar measurement of tropospheric water vapor and aerosols profiles over southern Italy. J Geophys Res 108. doi:10.1029/2002JD002781

  • De Tomasi F, Perrone MR (2006) PBL and dust layer seasonal evolution by lidar and radiosounding measurements over a peninsular site. Atmos Res 80: 86–103

    Article  Google Scholar 

  • Delbarre H, Augustin P, Saïd F, Campistron B, Benech B, Lohou F, Puygrenier V, Moppert C, Cousin F, Freville P, Frejafon E (2005) Ground-based remote sensing observation of the complex behaviour of the Marseille boundary layer during ESCOMPTE. Atmos Res 74: 403–433

    Article  Google Scholar 

  • Flamant C, Pelon J, Flamant P, Durand P (1997) Lidar determination of the entrainment zone thickness at the top of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Boundary-Layer Meteorol 83: 247–284

    Article  Google Scholar 

  • Garratt JR (1990) The internal boundary layer: a review. Boundary-Layer Meteorol 50: 171–203

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, UK, p 316

    Google Scholar 

  • Gryning SE, Batchvarova E (1990) Analytical model for the growth of the coastal internal boundary layer during onshore flows. Q J Roy Meteorol Soc 116: 187–203

    Article  Google Scholar 

  • Gryning SE, Batchvarova E (1996) A model for the height of the internal boundary layer over an area with irregular coastline. Boundary-Layer Meteorol 78: 405–413

    Article  Google Scholar 

  • Gryning SE, Batchvarova E (2003) Marine atmospheric boundary-layer height estimated from nwp model output. Int J Environ Pollut 20: 147–153

    Google Scholar 

  • Haeffelin M, Morille Y, Görsdorf U, Teschke G, Beyrich F (2009) Retrieval of mixing layer depth from existing ceilometer/lidar networks in Europe. In: 8th international symposium on Tropospheric profiling: integration of needs, technologies and applications, 19–23 October 2009, Delft, The Netherlands, paper S10-002

  • Hanna SR, Burkhart CL, Paine RJ (1985) Mixing height uncertainties. In: Proceedings of 7th AMS symposium on Turbulence and diffusion, pp 82–85

  • Janjic ZI (1990) The step-mountain coordinate: physical package. Mon Weather Rev 118: 1429–1443

    Article  Google Scholar 

  • Janjic ZI (1996) The surface layer in the NCEP Eta Model. In: 11th conference on Numerical weather prediction, 19–23 August, Norfolk, VA, pp 354–355

  • Janjic ZI (2002) Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. Technical Report, NCEP, 437, 61 pp

  • Klemp JB, Skamarock WC, Dudhia J (2007) Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon Weather Rev 135: 2897–2913

    Article  Google Scholar 

  • Lammert A, Bösenberg J (2006) Determination of the convective boundary-layer height with laser remote sensing. Boundary-Layer Meteorol 119: 159–170

    Article  Google Scholar 

  • Lemonsu A, Bastin S, Masson V, Drobinski P (2006) Vertical structure of the urban boundary layer over Marseille under sea-breeze conditions. Boundary-Layer Meteorol 118: 477–501

    Article  Google Scholar 

  • Luhar A (1998) An analytical slab model for the growth of the coastal thermal internal boundary layer under near neutral on shore flow conditions. Boundary-Layer Meteorol 89: 385–405

    Article  Google Scholar 

  • Luhar AK, Sawford BL, Hacker JM, Rayner KN (1998) The Kwinana Coastal Fumigation Study: II—growth of the thermal internal boundary layer. Boundary-Layer Meteorol 88: 103–120

    Article  Google Scholar 

  • Mangia C, Martano P, Miglietta MM, Morabito A, Tanzarella A (2004) Modeling local winds over the Salento peninsula. Meteorol Appl 11: 231–244

    Article  Google Scholar 

  • Martano P (2002) An algorithm for the calculation of the time dependent mixing height in coastal site. J Appl Meteorol 41: 351–354

    Article  Google Scholar 

  • Maryon RH, Best MJ (1992) ‘NAME’, ‘ATMES’ and the boundary layer problem. Turbulence and Diffusion Note. Technical Report 204, UK Meteorological Office

  • Mastrantonio G, Viola AP, Argentini S, Fiocco G, Giannini L, Rossini L, Abbate G, Ocone R, Casonato M (1994) Observations of sea breeze events in Rome and the surrounding area by a network of Doppler sodars. Boundary-Layer Meteorol 71: 67–80

    Article  Google Scholar 

  • Matthias V, Balis D, Bösenberg J, Eixmann R, Iarlori M, Komguem L, Mattis I, Papayannis A, Pappalardo G, Perrone MR, Wang X (2004) Vertical aerosol distribution over europe: statistical analysis of raman lidar data from 10 european aerosol research lidar network (EARLINET) stations. J Geophys Res 109: D18201

    Article  Google Scholar 

  • McCormick P (2005) Airborne and spaceborne lidar. In: Weitkamp CE Lidar Range-resolved optical remote sensing of the atmosphere. Springer series in Optical sciences, vol 102, chap 13. Springer Science, Heidelberg, UK, pp 355–397

  • McElroy JL, Smith TB (1991) Lidar descriptions of mixing-layer thickness characteristics in a complex terrain/coastal environment. J Appl Meteorol 30: 585–597

    Article  Google Scholar 

  • McQueen JT, Tassone C, Tsidulko M, Zhu Y, Cucurull L, Liu S, Manikin G, DiMego G (2010) An overview of the NOAA/NWS/NCEP real-time mesoscale analysis (RTMA) system with extensions for the atmospheric boundary layer. In: 16th conference on Air pollution meteorology, 17–21 January 2010, Atlanta, GA, paper 7.6

  • Melas D, Kambezidis HD (1992) The depth of the internal boundary layer over an urban area under sea-breeze condition. Boundary-Layer Meteorol 61: 247–264

    Article  Google Scholar 

  • Melas D, Ziomas I, Zerefos C (1995) Boundary layer dynamics in an urban coastal environment under sea-breeze conditions. Atmos Environ 29: 3605–3617

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20: 851–875

    Article  Google Scholar 

  • Michalakes J, Dudhia J, Gill D, Henderson T, Klemp J, Skamarock W, Wang W (2005) The weather research and forecast model: software architecture and performance. In: Zwieflhofer W, Mozdzynski G (eds) 11th ECMWF Workshop on the Use of high performance computing in meteorology. World Scientific, River Edge, pp 156–168

    Chapter  Google Scholar 

  • Miller STK, D KB, Talbot RW, Mao H (2003) Sea breeze: structure, forecasting, and impacts. Rev Geophys 41(3): 1011

    Article  Google Scholar 

  • Murayama T, Okamoto H, Kaneyasu N, Kamataki H, Miura K (1999) Application of lidar depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles. J Geophys Res 104: 31,781–31,792

    Article  Google Scholar 

  • Puygrenier V, Lohou F, Campistron F, Said F, Pigeon G, Benech B, Serça D (2005) Investigation on the fine structure of sea-breeze during ESCOMPTE experiment. Atmos Res 74: 329–353

    Article  Google Scholar 

  • Santacesaria V, Marenco F, Balis D, Papayannis A, Zerefos C (1998) Lidar observations of the planetary boundary layer above the city of Thessaloniki, Greece. Nuovo Cimento C 21(6): 585–595

    Google Scholar 

  • Sassen K (2005) Polarization in lidar. In: Weitkamp CE Lidar: range-resolved optical remote sensing of the atmosphere. Springer Series in Optical sciences, vol 102, chap 2. Springer Science, Heidelberg, UK, pp 19–42

  • Seibert P, Beyrich F, Gryining SE, Joggre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34: 1001–1027

    Article  Google Scholar 

  • Sicard M, Perez C, Rocadenbosch F, Baldasano JM, Garcia-Vizcaino D (2006) Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements: methods, results and limitations. Boundary-Layer Meteorol 119: 135–157

    Article  Google Scholar 

  • Simpson JE (1994) Sea breeze and local winds. Cambridge University Press, Cambridge, p 234

    Google Scholar 

  • Steyn DG, Oke TR (1982) The depth of the daytime mixed layer at two coastal sites: a model and its validation. Boundary-Layer Meteorol 24: 161–180

    Article  Google Scholar 

  • Steyn DG, Bottenheim JW, Thomson RB (1997) Overview of tropospheric ozone in the Lower Fraser Valley, and the Pacific ’93 field study. Atmos Environ 31(14): 2025–2035

    Article  Google Scholar 

  • Stohl A (1998) Computation, accuracy and applications of trajectories: a review and bibliography. Atmos Environ 32: 947–966

    Article  Google Scholar 

  • Stull RB (1988) Introduction to boundary layer meteorology. Kluwer, Dordrecht, p 670

    Google Scholar 

  • Szintai B, Kaufmann P, Rotach MW (2009) Deriving turbulence characteristics from the COSMO numerical weather prediction model for dispersion applications. Adv Sci Res 3: 79–84

    Article  Google Scholar 

  • Talbot C, Augustin P, Leroy C, Willart V, Delbarre H, Khomenco G (2007) Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea. Boundary-Layer Meteorol 125: 133–154

    Article  Google Scholar 

  • Tennekes H (1973) A model for the dynamics of the inversion above a convective boundary layer. J Atmos Sci 30: 558–567

    Article  Google Scholar 

  • Wandinger U (2005) Introduction to lidar. In: Weitkamp CE Lidar: range-resolved optical remote sensing of the atmosphere. Springer Series in Optical sciences, vol 102, chap 1. Springer Science, Heidelberg, UK, pp 1–18

  • Wauben WMF, de Haij M, Baltink HK (2008) Towards a cloud ceilometer network reporting mixing layer height. In: TECO-2008—WMO technical conference on Meteorological and environmental instruments and methods of observation–St. Petersburg, Russian Federation, 27–29 November 2008, paper P1(5)

  • Weisman M, Davis C, Wang W (2005) Explicit convective forecasting with the WRF model. In: WRF-MM5 workshop, June 30, Boulder, CO

  • Wotawa G, Stohl A, Kromb-Kohl H (1996) Parameterization of the planetary boundary layer over Europe: a data comparison between the observation-based OML preprocessor and ECMWF model data. Contrib Atmos Phys 69: 273–284

    Google Scholar 

  • Zhang Y, Chen YL, Schroeder TA, Kodama K (2005) Numerical simulations of sea-breeze circulations over northwest Hawaii. Weather Forecasting 20: 827–846

    Article  Google Scholar 

  • Zilitinkevich S (1975) Comments on: a model for the dynamics of the inversion above a convective boundary layer. J Atmos Sci 32: 991–992

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando De Tomasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Tomasi, F., Miglietta, M.M. & Perrone, M.R. The Growth of the Planetary Boundary Layer at a Coastal Site: a Case Study. Boundary-Layer Meteorol 139, 521–541 (2011). https://doi.org/10.1007/s10546-011-9592-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-011-9592-6

Keywords

Navigation