Skip to main content
Log in

Turbulent Transport of Momentum and Scalars Above an Urban Canopy

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

An Erratum to this article was published on 31 January 2014

Abstract

Turbulent transport of momentum and scalars over an urban canopy is investigated using the quadrant analysis technique. High-frequency measurements are available at three levels above the urban canopy (47, 140 and 280 m). The characteristics of coherent ejection–sweep motions (flux contributions and time fractions) at the three levels are analyzed, particularly focusing on the difference between ejections and sweeps, the dissimilarity between momentum and scalars, and the dissimilarity between the different scalars (i.e., temperature, water vapour and \(\hbox {CO}_{2})\). It is found that ejections dominate momentum and scalar transfer at all three levels under unstable conditions, while sweeps are the dominant eddy motions for transporting momentum and scalars in the urban roughness sublayer under neutral and stable conditions. The flux contributions and time fractions of ejections and sweeps can be adequately captured by assuming a Gaussian joint probability density function for flow variables. However, the inequality of flux contributions from ejections and sweeps is more accurately reproduced by the third-order cumulant expansion method (CEM). The incomplete cumulant expansion method (ICEM) also works well except for \(\hbox {CO}_{2}\) at 47 m where the skewness of \(\hbox {CO}_{2}\) fluctuations is significantly larger than that for vertical velocity. The dissimilarity between momentum and scalar transfers is linked to the dissimilarity in the characteristics of ejection–sweep motions and is further quantified by measures of transport efficiencies. Atmospheric stability is the controlling factor for the transport efficiencies of momentum and heat, and fitted functions from the literature describe their behaviour fairly accurately. However, transport efficiencies of water vapour and \(\hbox {CO}_{2}\) are less affected by the atmospheric stability. The dissimilarity among the three scalars examined in this study is linked to the active role of temperature and to the surface heterogeneity effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • AI-Jiboori MH (2008) Correlation coefficients in urban turbulence. Boundary-Layer Meteorol 126(2):311–323

    Article  Google Scholar 

  • AI-Jiboori MH, Hu F (2005) Surface roughness around a 325-m meteorological tower and its effect on urban turbulence. Adv Atmos Sci 22(4):595–605

    Article  Google Scholar 

  • AI-Jiboori MH, Xu YM, Qian YF (2002) Local similarity relationships in the urban boundary layer. Boundary-Layer Meteorol 102(1):63–82

    Article  Google Scholar 

  • Antonia RA (1981) Conditional sampling in turbulence measurement. Annu Rev Fluid Mech 13:131–156

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. lnt J Climatol 23(1):1–26

    Article  Google Scholar 

  • Asanuma J, Tamagawa I, Ishikawa H, Ma YM, Hayashi T, Qi YQ, Wang JM (2007) Spectral similarity between scalars at very low frequencies in the unstable atmospheric surface layer over the Tibetan plateau. Boundary-Layer Meteorol 122(1):85–103

    Article  Google Scholar 

  • Assouline S, Tyler SW, Tanny J, Cohen S, Bou-Zeid E, Parlange MB, Katul GG (2008) Evaporation from three water bodies of different sizes and climates: measurements and scaling analysis. Adv Water Resour 31(1):160–172

    Article  Google Scholar 

  • Bergstrom H, Hagstrom U (1989) Turbulent exchange above a Pine forest.2. Organized structures. Boundary-Layer Meteorol 49(3):231–263

    Article  Google Scholar 

  • Böhm M, Finnigan J, Raupach M, Hughes D (2012) Turbulence structure within and above a canopy of bluff elements. Boundary-Layer Meteorol 1–27

  • Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35:469–496

    Article  Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere: theory, history, and applications. Reidel, Dordrecht, Holland

    Book  Google Scholar 

  • Cava D, Katul GG, Sempreviva AM, Giostra U, Scrimieri A (2008) On the anomalous behaviour of scalar flux-variance similarity functions within the canopy sub-layer of a dense alpine forest. Boundary-Layer Meteorol 128(1):33–57

    Article  Google Scholar 

  • Chen F, Kusaka H, Bornstein R, Ching J, Grimmond CSB, Grossman-Clarke S, Loridan T, Manning KW, Martilli A, Miao SG, Sailor D, Salamanca FP, Taha H, Tewari M, Wang XM, Wyszogrodzki AA, Zhang CL (2011) The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. lnt J Climatol 31(2):273–288

    Article  Google Scholar 

  • Christen A, Rotach MW, Vogt R (2009) The budget of turbulent kinetic energy in the urban roughness sublayer. Boundary-Layer Meteorol 131(2):193–222

    Article  Google Scholar 

  • Christen A, van Gorsel E, Vogt R (2007) Coherent structures in urban roughness sublayer turbulence. lnt J Climatol 27(14):1955–1968

    Article  Google Scholar 

  • Chu CR, Parlange MB, Katul GG, Albertson JD (1996) Probability density functions of turbulent velocity and temperature in the atmospheric surface layer. Water Resour Res 32(6):1681–1688

    Article  Google Scholar 

  • Coceal O, Dobre A, Thomas TG, Belcher SE (2007) Structure of turbulent flow over regular arrays of cubical roughness. J Fluid Mech 589:375–409

    Article  Google Scholar 

  • De Bruin HAR, Kohsiek W, Vandenhurk BJJM (1993) A verification of some methods to determine the fluxes of momentum, sensible heat, and water-vapor using standard-deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol 63(3):231–257

    Article  Google Scholar 

  • De Bruin HAR, Van Den Hurk B, Kroon UM (1999) On the temperature-humidity correlation and similarity. Boundary-Layer Meteorol 93(3):453–468

    Article  Google Scholar 

  • Detto M, Katul G, Mancini M, Montaldo N, Albertson JD (2008) Surface heterogeneity and its signature in higher-order scalar similarity relationships. Agric For Meteorol 148(6–7):902–916

    Article  Google Scholar 

  • Detto M, Katul GG (2007) Simplified expressions for adjusting higher-order turbulent statistics obtained from open path gas analyzers. Boundary-Layer Meteorol 122(1):205–216

    Article  Google Scholar 

  • Dias NL, Brutsaert W (1996) Similarity of scalars under stable conditions. Boundary-Layer Meteorol 80(4):355–373

    Article  Google Scholar 

  • Ding AJ, Wang T, Thouret V, Cammas JP, Nedelec P (2008) Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program. Atmos Chern Phys 8(1):1–13

    Article  Google Scholar 

  • Dupont S, Patton EG (2012) Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment. Atmos Chern Phys 12(13):5913–5935

    Article  Google Scholar 

  • Feigenwinter C, Vogt R (2005) Detection and analysis of coherent structures in urban turbulence. Theor Appl Climatol 81(3–4):219–230

    Article  Google Scholar 

  • Fernando HJS (2010) Fluid Dynamics of Urban Atmospheres in Complex Terrain. Annu Rev Fluid Mech 42:365–389

    Article  Google Scholar 

  • Fernando HJS, Zajic D, DiSabatino S, Dimitrova R, Hedquist B, Dallman A (2010) Flow, turbulence, and pollutant dispersion in urban atmospheres. Phys Fluids 22(5)

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571

    Article  Google Scholar 

  • Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques: Part 1: averaging and coordinate rotation. Boundary-Layer Meteorol 107(1):1–48

    Article  Google Scholar 

  • Finnigan JJ, Shaw RH, Patton EG (2009) Turbulence structure above a vegetation canopy. J Fluid Mech 637:387–424

    Article  Google Scholar 

  • Francone C, Katul GG, Cassardo C, Richiardone R (2012) Turbulent transport efficiency and the ejection-sweep motion for momentum and heat on sloping terrain covered with vineyards. Agric For Meteorol 162:98–107

    Article  Google Scholar 

  • Gao W, Shaw RH, Paw KT (1989) Observation of organized structure in turbulent-flow within and above a forest canopy. Boundary-Layer Meteorol 47(1–4):349–377

    Article  Google Scholar 

  • Graf A, Schuttemeyer D, Geiss H, Knaps A, Mollmann-Coers M, Schween JH, Kollet S, Neininger B, Herbst M, Vereecken H (2010) Boundedness of turbulent temperature probability distributions, and their relation to the vertical profile in the convective boundary layer. Boundary-Layer Meteorol 134(3):459–486

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu JG, Bai XM, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760

    Article  Google Scholar 

  • Grimmond CSB, Blackett M, Best MJ, Bail JJ, Belcher SE, Beringer J, Bohnenstengel 51, Calmet I, Chen F, Coutts A, Dandou A, Fortuniak K, Gouvea ML, Hamdi R, Hendry M, Kanda M, Kawai T, Kawamoto Y, Kondo H, Krayenhoff ES, Lee SH, Loridan T, MartiIIi A, Masson V, Miao S, Oleson K, Ooka R, Pigeon G, Parson A, Ryu YH, Salamanca F, Steeneveld GJ, Tombrou M, Voogt JA, Young DT, Zhang N (2011) Initial results from Phase 2 of the international urban energy balance model comparison. lnter J Climatol 31(2):244–272

  • Grimmond CSB, Blackett M, Best MJ, Barlow J, Baik JJ, Belcher SE, Bohnenstengel 51, Calmet I, Chen F, Dandou A, Fortuniak K, Gouvea ML, Hamdi R, Hendry M, Kawai T, Kawamoto Y, Kondo H, Krayenhoff ES, Lee SH, Loridan T, Martilli A, Masson V, Miao S, Oleson K, Pigeon G, Parson A, Ryu YH, Salamanca F, Shashua-Bar L, Steeneveld GJ, Tombrou M, Voogt J, Young D, Zhang N (2010) The international urban energy balance models comparison project: first results from phase 1. J Appl Meteorol Clim 49(6):1268–1292

  • Grimmond CSB, Oke TR (2002) Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). J Appl Meteorol 41(7):792–810

    Article  Google Scholar 

  • Horiguchi M, Hayashi T, Hashiguchi H, Ito Y, Ueda H (2010) Observations of coherent turbulence structures in the near-neutral atmospheric boundary layer. Boundary-Layer Meteorol 136(1):25–44

    Article  Google Scholar 

  • Hou A, Ni G, Yang H, Lei Z (2013) Numerical analysis on the contribution of urbanization to wind stilling. an example over the greater Beijing metropolitan area. J Appl Meteorol Clim 52(5):1105–1115. doi:10.1175/JAMC-D-12-013.1

    Article  Google Scholar 

  • Huang JP, Lee XH, Patton EG (2009) Dissimilarity of scalar transport in the convective boundary layer in inhomogeneous landscapes. Boundary-Layer Meteorol 130(3):327–345

    Article  Google Scholar 

  • lnagaki A, Kanda M (2010) Organized structure of active turbulence over an array of cubes within the logarithmic layer of atmospheric flow. Boundary-Layer Meteorol 135(2):209–228

    Article  Google Scholar 

  • Iwata H, Harazono Y, Ueyama M (2010) Influence of source/sink distributions on flux-gradient relationships in the roughness sublayer over an open forest canopy under unstable conditions. Boundary-Layer Meteorol 136(3):391–405

    Article  Google Scholar 

  • Kanda M (2006) Large-eddy simulations on the effects of surface geometry of building arrays on turbulent organized structures. Boundary-Layer Meteorol 118(1):151–168

    Article  Google Scholar 

  • Kanda M, Moriwaki R, Kasamatsu F (2004) Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol 112(2):343–368

    Article  Google Scholar 

  • Katsouvas GD, Helmis CG, Wang Q (2007) Quadrant analysis of the scalar and momentum fluxes in the stable marine atmospheric surface layer. Boundary-Layer Meteorol 124(3):335–360

    Article  Google Scholar 

  • Katul G, Cl Hsieh (1997a) Turbulent eddy motion at the forest-atmosphere interface. J Geophys Res Atmos 102(D12):13409–13421

    Article  Google Scholar 

  • Katul G, Kuhn G, Schieldge J, Cl Hsieh (1997b) The ejection-sweep character of scalar fluxes in the unstable surface layer. Boundary-Layer Meteorol 83(1):1–26

    Article  Google Scholar 

  • Katul G, Poggi D, Cava D, Finnigan J (2006) The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer. Boundary-Layer Meteorol 120(3):367–375

    Article  Google Scholar 

  • Katul GG, Cl Hsieh (1999) A note on the flux-variance similarity relationships for heat and water vapour in the unstable atmospheric surface layer. Boundary-Layer Meteorol 90(2):327–338

    Article  Google Scholar 

  • Katul GG, Parlange MB (1994) On the active-role oftemperature in surface-layer turbulence. J Atmos Sci 51(15):2181–2195

    Article  Google Scholar 

  • Katul GG, Sempreviva AM, Cava D (2008) The temperature-humidity covariance in the marine surface layer: a one-dimensional analytical model. Boundary-Layer Meteorol 126(2):263–278

    Article  Google Scholar 

  • Lee X, Yu Q, Sun X, Liu J, Min Q, Liu Y, Zhang X (2004) Micrometeorological fluxes under the influence of regional and local advection: a revisit. Agric For Meteorol 122(1–2):111–124

    Article  Google Scholar 

  • Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol 140(2):243–262

    Article  Google Scholar 

  • Li D, Bou-Zeid E, De Bruin H (2012a) Monin-Qbukhov similarity functions for the structure parameters of temperature and humidity. Boundary-Layer Meteorol 145(1):45–67

    Article  Google Scholar 

  • Li D, Katul GG, Bou-Zeid E (2012b) Mean velocity and temperature profiles in a sheared diabatic turbulent boundary layer. Phys Fluids 24(10)

  • Li QS, Zhi LH, Hu F (2010) Boundary layer wind structure from observations on a 325m tower. J Wind Eng lnd Aerodyn 98(12):818–832

    Article  Google Scholar 

  • Liu HZ, Feng JW, Jarvi L, Vesala T (2012) Four-year (2006–2009) eddy covariance measurements of CO\(_2\) flux over an urban area in Beijing. Atmos Chern Phys 12(17):7881–7892

    Article  Google Scholar 

  • Liu L, Hu F, Cheng XL (2011) Probability density functions of turbulent velocity and temperature fluctuations in the unstable atmospheric surface layer. J Geophys Res Atmos 116

  • Lu SS, Willmart WW (1973) Measurements of structure of reynolds stress in a turbulent boundary-layer. J Fluid Mech 60(Sep18):481–511

    Google Scholar 

  • Maitani T, Ohtaki E (1987) Turbulent transport processes of momentum and sensible heat in the surface-layer over a paddy field. Boundary-Layer Meteorol 40(3):283–293

    Article  Google Scholar 

  • Maitani T, Shaw RH (1990) Joint probability analysis of momentum and heat fluxes at a deciduous forest. Boundary-Layer Meteorol 52(3):283–300

    Article  Google Scholar 

  • Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys Fluids 22(6):065103

    Article  Google Scholar 

  • McNaughton KG, Laubach J (1998) Unsteadiness as a cause of non-equality of eddy diffusivities for heat and vapour at the base of an advective inversion. Boundary-Layer Meteorol 88(3):479–504

    Article  Google Scholar 

  • Miao S, Dou J, Chen F, Li J, Li A (2012) Analysis of observations on the urban surface energy balance in Beijing. Sci China Earth Sci 55(11):1881–1890

    Article  Google Scholar 

  • Moene AF, Schuttemeyer D (2008) The effect of surface heterogeneity on the temperature-humidity correlation and the relative transport efficiency. Boundary-Layer Meteorol 129(1):99–113

    Article  Google Scholar 

  • Moriwaki R, Kanda M (2004) Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J Appl Meteorol 43(11):1700–1710

    Article  Google Scholar 

  • Moriwaki R, Kanda M (2006) Local and global similarity in turbulent transfer of heat, water vapour, and CO\(_{2}\) in the dynamic convective sublayer over a suburban area. Boundary-Layer Meteorol 120(1):163–179

    Article  Google Scholar 

  • Nakagawa H, Nezu I (1977) Prediction of contributions to reynolds stress from bursting events in open-channel flows. J Fluid Mech 80(Apr4):99–128

    Google Scholar 

  • Nordbo A, Jarvi L, Haapanala S, Moilanen J, Vesala T (2013) Intra-city variation in urban morphology and turbulence structure in helsinki, finland. Boundary-Layer Meteorol 146(3):469–496

    Article  Google Scholar 

  • Oke TR (1988) The urban energy-balance. Prog Phys Geogr 12(4):471–508

    Article  Google Scholar 

  • Paw KT, Brunet Y, Collineau S, Shaw RH, Maitani T, Qiu J, Hipps L (1992) On coherent structures in turbulence above and within agricultural plant canopies. Agric For Meteorol 61(1–2):55–68

    Article  Google Scholar 

  • Piringer M, Grimmond CSB, Joffre SM, Mestayer P, Middleton DR, Rotach MW, Baklanov A, De Ridder K, Ferreira J, Guilloteau E, Karppinen A, Martilli A, Masson V, Tombrou M (2002) Investigating the surface energy balance in urban areas- recent advances and future needs. Water Air Soil Pollut Focus 2(5–6):1–16

    Article  Google Scholar 

  • Poggi D, Porporato A, Ridolfi L, Albertson JD, Katul GG (2004) The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol 111(3):565–587

    Article  Google Scholar 

  • Quan LH, Hu F (2009) Relationship between turbulent flux and variance in the urban canopy. Meteorol Atmosphere Phys 104(1–2):29–36

    Article  Google Scholar 

  • Raupach MR (1981) Conditional statistics of reynolds stress in rough-wall and smooth-wall turbulent boundary-layers. J Fluid Mech 108(Jul):363–382

    Google Scholar 

  • Raupach MR, Thom AS (1981) Turbulence in and above plant canopies. Annu Rev Fluid Mech 13:97–129

    Article  Google Scholar 

  • Robinson SK (1991) Coherent motions in the turbulent boundary-layer. Annu Rev Fluid Mech 23:601–639

    Article  Google Scholar 

  • Rotach MW (1993a) Turbulence close to a rough urban surface.1. Reynolds stress. Boundary-Layer Meteorol 65(1–2):1–28

  • Rotach MW (1993b) Turbulence close to a rough urban surface.2. Variances and gradients. Boundary-Layer Meteorol 66(1–2):75–92

  • Roth M (1993) Turbulent transfer relationships over an urban surface.2. Integral statistics. Q J R Meteorol Soc 119(513):1105–1120

    Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126(564):941–990

    Article  Google Scholar 

  • Roth M, Oke TR (1993) Turbulent transfer relationships over an urban surface.1. spectral characteristics. Q J R Meteorol Soc 119(513):1071–1104

    Google Scholar 

  • Roth M, Oke TR (1995) Relative efficiencies of turbulent transfer of heat, mass, and momentum over a patchy urban surface. J Atmos Sci 52(11):1863–1874

    Article  Google Scholar 

  • Sempreviva AM, Gryning SE (2000) Mixing height over water and its role on the correlation between temperature and humidity fluctuations in the unstable surface layer. Boundary-Layer Meteorol 97(2):273–291

    Article  Google Scholar 

  • Shaw RH, Tavangar J, Ward DP (1983) Structure of the reynolds stress in a canopy layer. J Clim Appl Meteorol 22(11):1922–1931

    Article  Google Scholar 

  • Smits AJ, McKeon BJ, Marusic I (2011) High-Reynolds number wall turbulence. Annu Rev Fluid Mech 43:353–375

    Article  Google Scholar 

  • Song T, Wang YS (2012) Carbon dioxide fluxes froman urban area in beijing. Atmos Res 106:139–149

    Article  Google Scholar 

  • Wang ZH, Bou-Zeid E, Smith JA (2013) A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Q J R Meteorol Soc 139(675):1643–1657

    Article  Google Scholar 

  • Warhaft Z (1976) Heat and moisture flux in the stratified boundary layer. Q J R Meteorol Soc 102(433):703–707

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106(447):85–100. doi:10.1002/qj.49710644707

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150

    Article  Google Scholar 

  • Williams CA, Scanlon TM, Albertson JD (2007) Influence of surface heterogeneity on scalar dissimilarity in the roughness sublayer. Boundary-Layer Meteorol 122(1):149–165

    Article  Google Scholar 

  • Willmart WW, Lu 55 (1972) Structure of reynolds stress near wall. J Fluid Mech 55(Sep12):65–92

    Google Scholar 

  • Wood CR, Lacser A, Barlow JF, Padhra A, Belcher SE, Nemitz E, Helfter C, Famulari D, Grimmond CSB (2010) Turbulent Flow at 190 m height above london during 2006–2008: a climatology and the applicability of similarity theory. Boundary-Layer Meteorol 137(1):77–96

    Article  Google Scholar 

  • Wu C, Murray AT (2003) Estimating impervious surface distribution by spectral mixture analysis. Remote Sens Environ 84(4):493–505. doi:10.1016/s0034-4257(02)00136-0

    Article  Google Scholar 

  • Wyngaard JC, Moeng CH (1992) Parameterizing turbulent-diffusion through the joint probability density. Boundary-Layer Meteorol 60(1–2):1–13

    Article  Google Scholar 

  • Zhao Z, Gao Z, LiD, Bi X, Liu C, Liao F (2013) Scalar flux-gradient relationships under unstable conditions over water in coastal regions. Boundary-Layer Meteorol:1–22

Download references

Acknowledgments

This study was supported by the National Key Basic Research Grogram under grant 2010CB428502 and 2012CB417203, the China Meteorological Administration Grant GYHY201006024, the CAS Strategic Priority Research Program Grant XDA05110101, and the National Natural Science Foundation of China under Grant 41275022. Dan Li and Elie Bou-Zeid are supported by the United States National Science Foundation under Grant CBET-1058027. The authors thank the three reviewers whose comments and suggestions have substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Li, D., Gao, Z. et al. Turbulent Transport of Momentum and Scalars Above an Urban Canopy. Boundary-Layer Meteorol 150, 485–511 (2014). https://doi.org/10.1007/s10546-013-9877-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-013-9877-z

Keywords

Navigation