Skip to main content

Advertisement

Log in

Cortical Network Analysis in Patients Affected by Schizophrenia

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

In the present study, we studied the structural changes of the brain functional network in a group of schizophrenic (SCHZ) patients during a 2-back working memory task. Cortical signals were obtained from scalp EEG signals through the high-resolution EEG technique, which relies on realistic head models and linear inverse solutions. Functional networks were estimated by computing the spectral coherence—i.e. a measure of synchronization in the frequency domain—between the time series of all the available cortical sources. To analyze those cortical networks we followed a theoretical graph approach by computing the network density as the total number of links and the node degree as the number of links of each cortical source. The major result suggest that in the Alpha2 frequency band (11–13 Hz) the cortical functional networks of the SCHZ patients present the largest differences when compared with those of a group of control (CTRL) subjects. In particular, the structure of the SCHZ network altered radically during the memory task, as the number of links that were different from the REST condition increased sensibly with respect to the CTRL network. In addition, a compensatory mechanism was found in the SCHZ patients during the correct performance of the memory task where the node degree showed a frontal asymmetry with higher activation of the left frontal lobe—i.e. higher number of connections—in the Alpha2 frequency band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PloS Comput Biol 3(2):e17

    Article  PubMed  Google Scholar 

  • Babiloni F, Babiloni C, Locche L, Cincotti F, Rossini PM, Carducci F (2000) High resolution EEG: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images. Med Biol Eng Comput 38:512–519

    Article  CAS  PubMed  Google Scholar 

  • Bachman P, Kimb J, Yerac CM, Thermand S, Manninend M, Lönnqvist J, Kapriode J, Huttunend MO, Näätänenfg R, Cannonac TD (2008) Abnormally high EEG alpha synchrony during working memory maintenance in twins discordant for schizophrenia. Schizophr Res 103:293–297

    Article  PubMed  Google Scholar 

  • Bartolomei F, Bosma I, Klein M, Baayen JC, Reijneveld JC, Postma TJ, Heimans JJ, van Dijk BW, de Munck JC, de Jongh A, Cover KS, Stam CJ (2006) Disturbed functional connectivity in brain tumour patients: evaluation by graph analysis of synchronization matrices. Clin Neurophysiol 117:2039–2049

    Article  PubMed  Google Scholar 

  • Bassett DS, Meyer-Linderberg A, Achard S, Duke Th, Bullmore E (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. PNAS 103:19518–19523

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Blyler CR, Gold JM (2000) Cognitive effects of typical antipsychotic treatment: another look in cognitive deficits in schizophrenia. Schizophr Res 46:139–148

    Article  Google Scholar 

  • Bor D, Duncan J, Wiseman RJ, Owen AM (2003) Encoding strategies dissociate prefrontal activity from working memory demand. NEURON 37(2):361–367

    Article  CAS  PubMed  Google Scholar 

  • De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Salinari S, Kurths J, Gao S, Cichocki A, Colosimo A, Babiloni F (2007) Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis. Hum Brain Mapp 28:1334–1336

    Article  PubMed  Google Scholar 

  • De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Tocci A, Salinari S, Witte H, Hesse W, Gao S, Colosimo A, Babiloni F (2008) Cortical network dynamics during foot movements. Neuroinformatics 6(1):23–34

    Article  PubMed  Google Scholar 

  • Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102

    Article  PubMed  Google Scholar 

  • Gevins A, Le J, Martin N, Brickett P, Desmond J, Reutter B (1994) High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods. Electroencephalogr Clin Neurophysiol 39:337–358

    Google Scholar 

  • Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR, Bearden CE, Velligan DJ (2005) Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp 25:60–69

    Article  PubMed  Google Scholar 

  • Jensen O, Gelfand J, Kounios J, Lisman JE (2002) Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12(8):877–882

    Article  PubMed  Google Scholar 

  • Jonides J, Schumacher EH, Smith EE, Koeppe RA, Awh E, Reuter-Lorenz PA, Marshuer C, Willis CR (1998) The role of the parietal cortex in the verbal working memory. J Neurosci 18:5026–5034

    CAS  PubMed  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W, Doppelmayr M, Pachinger T, Russegger H (1997) Event-related desynchronization in the alpha band and the processing of semantic information. Cogn Brain Res 6(2):83–94

    Article  CAS  Google Scholar 

  • Lago-Fernandez LF, Huerta R, Corbacho F, Siguenza JA (2000) Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett 84:2758–2761

    Article  CAS  PubMed  Google Scholar 

  • Langers DRM, Jansen JFA, Backes WH (2007) Enhanced signal detection in neuroimaging by means of regional control of the global false discovery rate. Neuroimage 38:43–56

    Article  PubMed  Google Scholar 

  • Le J, Gevins A (1993) A method to reduce blur distortion from EEG’s using a realistic head model. IEEE Trans Biomed Eng 40:517–528

    Article  CAS  PubMed  Google Scholar 

  • Manoach DS (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: Reconciling discrepant findings. Schizophr Res 60(2–3):285–298

    Article  PubMed  Google Scholar 

  • Micheloyannis S, Pachou E, Stam CJ, Vourkas M, Erimaki S, Tsirka V (2006a) Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402:273–277

    Article  CAS  PubMed  Google Scholar 

  • Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, Erimaki S, Zervakis M (2006b) Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87:60–66

    Article  PubMed  Google Scholar 

  • Neubauer AC, Fink A (2003) Fluid intelligence and neural efficiency: effects of task complexity and sex. Pers Individ Dif 35:811–827

    Article  Google Scholar 

  • Pertides M, Pandya DN (1984) Projections to the frontal cortex from the parietal region in the rhesus monkey. J Comp Neurol 228:105–116

    Article  Google Scholar 

  • Ponten SC, Bartolomei F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118(4):918–927

    Article  CAS  PubMed  Google Scholar 

  • Rappelsberger R, Petsche H (1988) Probability mapping: power and coherence analyses of cognitive processes. Brain Topogr 1(1):46–54

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM (1989) The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol 53(1):1–31

    Article  CAS  PubMed  Google Scholar 

  • Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342

    Article  PubMed  Google Scholar 

  • Sporns O (2002) Graph theory methods for the analysis of neural connectivity patterns. In: Kötter R (ed) Neuroscience databases. A practical guide. Kluwer, Boston, pp 171–186

    Google Scholar 

  • Sporns O, Zwi J (2004) The small world of the cerebral cortex. Neuroinformatics 2:145–162

    Article  PubMed  Google Scholar 

  • Sporns O, Tononi G, Edelman GE (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13:909–922

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ (2000) Brain dynamics in theta and alpha frequency bands and working memory performance in humans. Neurosci Lett 286(2):115–118

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett 355:25–28

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ, Jones BF, Manshanden I, van Walsum AM, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2006) Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease. Neuroimage 32:1335–1344

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens Ph (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99

    Article  CAS  PubMed  Google Scholar 

  • Stephan KE, Hilgetag C-C, Burns GAPC, O’Neill MA, Young MP, Kotter R (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Phil Trans R Soc Lond B 355:111–126

    Article  CAS  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  CAS  PubMed  Google Scholar 

  • Sun FT, Miller LM, D’Esposito M (2004) Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage 21(2):647–658

    Article  PubMed  Google Scholar 

  • Surguladze SA, Chu EM, Evans AS (2007) The effect of long-acting risperidone on working memory in schizophrenia: a functional magnetic resonance imaging study. J Clin Psychopharmacol 27:560–570

    Article  CAS  PubMed  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037

    Article  CAS  PubMed  Google Scholar 

  • Tregellas JR, Tanabe JL, Miller DE, Freedman R (2002) Monitoring eye movements during fMRI tasks with echo planar images. Hum Brain Mapp 17(4):237–243

    Article  PubMed  Google Scholar 

  • Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE (2001) Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50(11):825–844

    Article  CAS  PubMed  Google Scholar 

  • Wink AM, Roerdink JBTM (2004) Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing. IEEE Trans Med Imaging 23(3):374–387

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was performed with the support of the COST EU project NEUROMATH (BM 0601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio De Vico Fallani.

Additional information

This is one of several papers published together in Brain Topography on the “Special Topic: Cortical Network Analysis with EEG/MEG”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Vico Fallani, F., Maglione, A., Babiloni, F. et al. Cortical Network Analysis in Patients Affected by Schizophrenia. Brain Topogr 23, 214–220 (2010). https://doi.org/10.1007/s10548-010-0133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-010-0133-2

Keywords

Navigation