Skip to main content
Log in

Information Communication Networks in Severe Traumatic Brain Injury

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

In this study we explored the use of coherence and Granger causality (GC) to separate patients in minimally conscious state (MCS) from patients with severe neurocognitive disorders (SND) that show signs of awareness. We studied 16 patients, 7 MCS and 9 SND with age between 18 and 49 years. Three minutes of ongoing electroencephalographic (EEG) activity was obtained at rest from 19 standard scalp locations, while subjects were alert but kept their eyes closed. GC was formulated in terms of linear autoregressive models that predict the evolution of several EEG time series, each representing the activity of one channel. The entire network of causally connected brain areas can be summarized as a graph of incompletely connected nodes. The 19 channels were grouped into five gross anatomical regions, frontal, left and right temporal, central, and parieto-occipital, while data analysis was performed separately in each of the five classical EEG frequency bands, namely delta, theta, alpha, beta, and gamma. Our results showed that the SND group consistently formed a larger number of connections compared to the MCS group in all frequency bands. Additionally, the number of connections in the delta band (0.1–4 Hz) between the left temporal and parieto-occipital areas was significantly different (P < 0.1%) in the two groups. Furthermore, in the beta band (12–18 Hz), the input to the frontal areas from all other cortical areas was also significantly different (P < 0.1%) in the two groups. Finally, classification of the subjects into distinct groups using as features the number of connections within and between regions in all frequency bands resulted in 100% classification accuracy of all subjects. The results of this study suggest that analysis of brain connectivity networks based on GC can be a highly accurate approach for classifying subjects affected by severe traumatic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Box GEP, Jenkins GM, Reinsel GC (2008) Time series analysis: forecasting and control. John Wiley, New York

    Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  • Cui J, Xu L, Bressler SL, Ding M, Liang H (2008) BSMART: a Matlab/C toolbox for analysis of multichannel neural time series. Neural Netw 21:1094–1104

    Article  PubMed  Google Scholar 

  • De Vico Fallani F, Baluche F, Astolfi L, Subramanian D, Zouridakis G, Babiloni F (in press) Structural organization of functional networks from EEG signals during motor learning tasks. J Bifurcat Chaos

  • Frye RE, Wu M, Zouridakis G, McGraw Fisher J, Liederman J, Halgren E (2007a) Changes in cortical connectivity in young adults with a history of reading disability. Society of Neuroscience Meeting, San Diego, CA

  • Frye RE, Wu M, Zouridakis G (2007b) Dynamic autoregressive neuromagnetic causality imaging (DANCI). Proceedings of the WSEAS international conference on computers, Crete, Greece

  • Frye RE, Wu M, Zouridakis G (2009) A comparison of Granger causality methods for the analysis of neurophysiological data, under review

  • Gonzalez RC, Wintz P (1977) Digital image processing. Addison-Wesley, Reading, MA

    Google Scholar 

  • Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438

    Article  Google Scholar 

  • Iriarte J, Urrestarazu E, Valencia M, Alegre M, Malanda A, Viteri C, Artieda J (2003) Independent component analysis as a tool to eliminate artifacts in EEG: a quantitative study. J Clin Neurophysiol 20:249–257

    Article  PubMed  Google Scholar 

  • Langlois JA, Rutland-Brown W, Thomas KE (2006) Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  • Leon-Carrion J, Martin-Rodriguez JF, Damas-Lopez J, Barroso JM, Dominguez-Morales MR (2008) Brain function in the minimally conscious state: a quantitative neurophysiological study. Clin Neurophysiol 119(7):1506–1514 Jul

    Article  PubMed  CAS  Google Scholar 

  • Max W, MacKenzie EJ, Rice DP (1991) Head injuries: cost and consequences. J Head Trauma Rehabil 6:76–91

    Article  Google Scholar 

  • Pophale S (2008) Quantification of cognitive processes in normal humans and patients with traumatic brain. MS Thesis, University of Houston

  • Robertson RH, Knight RG (2008) Evaluation of social problem solving after traumatic brain injury. Neuropsychol Rehabil 18(2):236–250

    Article  PubMed  Google Scholar 

  • Seth AK (2005) Causal connectivity of evolved neural networks during behavior. Network 16:35–54

    Article  PubMed  Google Scholar 

  • Seth AK, Edelman GM (2007) Distinguishing causal interactions in neural populations. Neural Comput 19:910–933

    Article  PubMed  Google Scholar 

  • Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, Murray GD, Marmarou A, Roberts I, Habbema JD, Maas AI (2008) Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med 5(8):e165

    Article  PubMed  Google Scholar 

  • Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2(7872):81–84

    Article  PubMed  CAS  Google Scholar 

  • The Traumatic Brain Injury Model Systems National Data and Statistical Center (TBINDSC). http://www.tbindsc.org/Documents/2009%20TBIMS%20Slide%20Presentation.pdf

Download references

Acknowledgments

This work was supported in part by NSF grant no. 521527, by grants from UH-GEAR, the Institute for Space Systems Operations, and the Texas Learning and Computation Center at the University of Houston, and by a grant from the Center for Brain Injury Rehabilitation (CRECER), Seville, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Zouridakis.

Additional information

This is one of several papers published together in Brain Topography on the “Special Topic: Cortical Network Analysis with EEG/MEG”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollonini, L., Pophale, S., Situ, N. et al. Information Communication Networks in Severe Traumatic Brain Injury. Brain Topogr 23, 221–226 (2010). https://doi.org/10.1007/s10548-010-0139-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-010-0139-9

Keywords

Navigation