Skip to main content
Log in

A Method to Determine the Presence of Averaged Event-Related Fields Using Randomization Tests

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

We present a simple and effective method to test whether an event consistently activates a set of brain electric sources across repeated measurements of event-related scalp field data. These repeated measurements can be single trials, single subject ERPs, or ERPs from different studies. The method considers all sensors simultaneously, but can be applied separately to each time frame or frequency band of the data. This allows limiting the analysis to time periods and frequency bands where there is positive evidence of a consistent relation between the event and some brain electric sources. The test may therefore avoid false conclusions about the data resulting from an inadequate selection of the analysis window and bandpass filter, and permit the exploration of alternate hypotheses when group/condition differences are observed in evoked field data. The test will be called topographic consistency test (TCT). The statistical inference is based on simple randomization techniques. Apart form the methodological introduction, the paper contains a series of simulations testing the statistical power of the method as function of number of sensors and observations, a sample analysis of EEG potentials related to self-initiated finger movements, and Matlab source code to facilitate the implementation. Furthermore a series of measures to control for multiple testing are introduced and applied to the sample data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blair RC, Karniski W (1993) An alternative method for significance testing of waveform difference potentials. Psychophysiology 5:518–524

    Article  Google Scholar 

  • Brandeis D, Naylor H, Halliday R, Callaway E, Yano L (1992) Scopolamine effects on visual information processing, attention, and event-related potential map latencies. Psychophysiology 3:315–336

    Article  Google Scholar 

  • De Lucia M, Michel CM, Murray MM (2007) Single subject EEG analysis based on topographic information. Int J Bioelectromagn 9:168–171

    Google Scholar 

  • Durka PJ, Blinowska KJ (1995) Analysis of EEG transients by means of matching pursuit. Ann Biomed Eng 5:608–611

    Article  Google Scholar 

  • Foxe JJ, Strugstad EC, Sehatpour P, Molholm S, Pasieka W, Schroeder CE, McCourt ME (2008) Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the “C1” component. Brain Topogr 1:11–21

    Article  Google Scholar 

  • Galan L, Biscay R, Rodriguez JL, Perez-Abalo MC, Rodriguez R (1997) Testing topographic differences between event related brain potentials by using non-parametric combinations of permutation tests. Electroencephalogr Clin Neurophysiol 3:240–247

    Google Scholar 

  • Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 4:870–878

    Article  Google Scholar 

  • Greenblatt RE, Pflieger ME (2004) Randomization-based hypothesis testing from event-related data. Brain Topogr 4:225–232

    Google Scholar 

  • Guthrie D, Buchwald JS (1991) Significance testing of difference potentials. Psychophysiology 2:240–244

    Article  Google Scholar 

  • Karniski W, Blair RC, Snider AD (1994) An exact statistical method for comparing topographic maps, with any number of subjects and electrodes. Brain Topogr 3:203–210

    Article  Google Scholar 

  • Koenig T, Melie-Garcia L (2009) Statistical analysis of multichannel scalp field data. In: Michel CM, Koenig T, Brandeis D, Gianotti LRR, Wackermann J (eds) Electrical neuroimaging. MIT Press, Cambridge, pp 169–189

    Chapter  Google Scholar 

  • Koenig T, Marti-Lopez F, Valdes-Sosa P (2001) Topographic time-frequency decomposition of the EEG. Neuroimage 2:383–390

    Article  Google Scholar 

  • Koenig T, Studer D, Hubl D, Melie L, Strik WK (2005) Brain connectivity at different time-scales measured with EEG. Philos Trans R Soc Lond B Biol Sci 1457:1015–1023

    Google Scholar 

  • Koenig T, Melie-Garcia L, Stein M, Strik W, Lehmann C (2008) Establishing correlations of scalp field maps with other experimental variables using covariance analysis and resampling methods. Clin Neurophysiol 6:1262–1270

    Article  Google Scholar 

  • Kornhuber H, Deecke L (1965) Hirnpotentialänderungen bei Willkurbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Arch 284:1–17

    Article  CAS  Google Scholar 

  • Kristeva R, Keller E, Deecke L, Kornhuber HH (1979) Cerebral potentials preceding unilateral and simultaneous bilateral finger movements. Electroencephalogr Clin Neurophysiol 2:229–238

    Google Scholar 

  • Lakatos P, Pincze Z, Fu KM, Javitt DC, Karmos G, Schroeder CE (2005) Timing of pure tone and noise-evoked responses in macaque auditory cortex. Neuroreport 9:933–937

    Article  Google Scholar 

  • Lantz G, Grave de Peralta R, Spinelli L, Seeck M, Michel CM (2003) Epileptic source localization with high density EEG: how many electrodes are needed? Clin Neurophysiol 1:63–69

    Article  Google Scholar 

  • Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 6:609–621

    Google Scholar 

  • Lobaugh NJ, West R, McIntosh AR (2001) Spatiotemporal analysis of experimental differences in event-related potential data with partial least squares. Psychophysiology 3:517–530

    Article  Google Scholar 

  • Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science 5555:690–694

    Article  Google Scholar 

  • Manly BFJ (2007) Randomization, bootstrap and Monte Carlo methods in biology. Chapman & Hall, Boca Raton

    Google Scholar 

  • Michel CM, Brandeis D (2009) Data acquisition and pre-processing standards for electrical neuroimaging. In: Michel CM, Koenig T, Brandeis D, Gianotti LRR, Wackermann J (eds) Electrical neuroimaging. MIT Press, Cambridge, pp 79–92

    Chapter  Google Scholar 

  • Mosher JC, Leahy RM, Lewis PS (1999) EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng 3:245–259

    Article  Google Scholar 

  • Murray MM, Foxe JJ, Higgins BA, Javitt DC, Schroeder CE (2001) Visuo-spatial neural response interactions in early cortical processing during a simple reaction time task: a high-density electrical mapping study. Neuropsychologia 8:828–844

    Article  Google Scholar 

  • Neuper C, Pfurtscheller G (2001) Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int J Psychophysiol 1:41–58

    Article  Google Scholar 

  • Nichols TE, Holmes AP (2001) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25

    Article  Google Scholar 

  • Shah AS, Bressler SL, Knuth KH, Ding M, Mehta AD, Ulbert I, Schroeder CE (2004) Neural dynamics and the fundamental mechanisms of event-related brain potentials. Cereb Cortex 5:476–483

    Article  Google Scholar 

  • Sperli F, Spinelli L, Seeck M, Kurian M, Michel CM, Lantz G (2006) EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup. Epilepsia 6:981–990

    Article  Google Scholar 

  • Zumsteg D, Friedman A, Wieser HG, Wennberg RA (2006) Propagation of interictal discharges in temporal lobe epilepsy: correlation of spatiotemporal mapping with intracranial foramen ovale electrode recordings. Clin Neurophysiol 12:2615–2626

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the two reviewers for their constructive and fast responses to the initial version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Koenig.

Appendix

Appendix

Matlab code snippet illustrating the application of the method.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenig, T., Melie-García, L. A Method to Determine the Presence of Averaged Event-Related Fields Using Randomization Tests. Brain Topogr 23, 233–242 (2010). https://doi.org/10.1007/s10548-010-0142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-010-0142-1

Keywords

Navigation