Skip to main content
Log in

A Tutorial on Data-Driven Methods for Statistically Assessing ERP Topographies

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Dynamic changes in ERP topographies can be conveniently analyzed by means of microstates, the so-called “atoms of thoughts”, that represent brief periods of quasi-stable synchronized network activation. Comparing temporal microstate features such as on- and offset or duration between groups and conditions therefore allows a precise assessment of the timing of cognitive processes. So far, this has been achieved by assigning the individual time-varying ERP maps to spatially defined microstate templates obtained from clustering the grand mean data into predetermined numbers of topographies (microstate prototypes). Features obtained from these individual assignments were then statistically compared. This has the problem that the individual noise dilutes the match between individual topographies and templates leading to lower statistical power. We therefore propose a randomization-based procedure that works without assigning grand-mean microstate prototypes to individual data. In addition, we propose a new criterion to select the optimal number of microstate prototypes based on cross-validation across subjects. After a formal introduction, the method is applied to a sample data set of an N400 experiment and to simulated data with varying signal-to-noise ratios, and the results are compared to existing methods. In a first comparison with previously employed statistical procedures, the new method showed an increased robustness to noise, and a higher sensitivity for more subtle effects of microstate timing. We conclude that the proposed method is well-suited for the assessment of timing differences in cognitive processes. The increased statistical power allows identifying more subtle effects, which is particularly important in small and scarce patient populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arzy S, Mohr C, Michel CM, Blanke O (2007) Duration and not strength of activation in temporo-parietal cortex positively correlates with schizotypy. Neuroimage 1:326–333. doi:10.1016/j.neuroimage.2006.11.027

    Article  Google Scholar 

  • Brandeis D, Naylor H, Halliday R, Callaway E, Yano L (1992) Scopolamine effects on visual information processing, attention, and event-related potential map latencies. Psychophysiology 3:315–336

    Article  Google Scholar 

  • Brandeis D, Lehmann D, Michel CM, Mingrone W (1995) Mapping event-related brain potential microstates to sentence endings. Brain Topogr 2:145–159

    Article  Google Scholar 

  • Brunet D, Murray MM, Michel CM (2011) Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput Intell Neurosci. doi:10.1155/2011/813870

    PubMed Central  PubMed  Google Scholar 

  • Chouiter L, Dieguez S, Annoni JM, Spierer L (2013) High and low stimulus-driven conflict engage segregated brain networks, not quantitatively different resources. Brain Topogr. doi:10.1007/s10548-013-0303-0

    PubMed  Google Scholar 

  • Darque A, Del ZM, Khateb A, Pegna AJ (2012) Attentional modulation of early ERP components in response to faces: evidence from the attentional blink paradigm. Brain Topogr 2:167–181. doi:10.1007/s10548-011-0199-5

    Article  Google Scholar 

  • De Lucia M, Michel CM, Murray MM (2010) Comparing ICA-based and single-trial topographic ERP analyses. Brain Topogr 2:119–127. doi:10.1007/s10548-010-0145-y

    Article  Google Scholar 

  • De Lucia M, Tzovara A, Bernasconi F, Spierer L, Murray MM (2012) Auditory perceptual decision-making based on semantic categorization of environmental sounds. Neuroimage 3:1704–1715. doi:10.1016/j.neuroimage.2012.01.131

    Article  Google Scholar 

  • Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach. Prentice-Hall, London

    Google Scholar 

  • Grieder M, Crinelli RM, Koenig T, Wahlund LO, Dierks T, Wirth M (2012) Electrophysiological and behavioral correlates of stable automatic semantic retrieval in aging. Neuropsychologia 50(1):160–171. doi:10.1016/j.neuropsychologia.2011.11.014

    Article  PubMed  Google Scholar 

  • Kikuchi M, Koenig T, Wada Y, Higashima M, Koshino Y, Strik W, Dierks T (2007) Native EEG and treatment effects in neuroleptic-naïve schizophrenic patients: time and frequency domain approaches. Schizophr Res 97(1-3):163–172. doi:10.1016/j.schres.2007.07.012

    Article  PubMed  Google Scholar 

  • Knebel JF, Murray MM (2012) Towards a resolution of conflicting models of illusory contour processing in humans. Neuroimage 3:2808–2817. doi:10.1016/j.neuroimage.2011.09.031

    Article  Google Scholar 

  • Koenig T, Melie-Garcia L (2010) A method to determine the presence of averaged event-related fields using randomization tests. Brain Topogr 3:233–242. doi:10.1007/s10548-010-0142-1

    Article  Google Scholar 

  • Koenig T, Lehmann D, Merlo MC, Kochi K, Hell D, Koukkou M (1999) A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. Eur Arch Psychiatry Clin Neurosci 4:205–211

    Article  Google Scholar 

  • Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage 1:41–48. doi:10.1006/nimg.2002.1070

    Article  Google Scholar 

  • Koenig T, Melie-Garcia L, Stein M, Strik W, Lehmann C (2008) Establishing correlations of scalp field maps with other experimental variables using covariance analysis and resampling methods. Clin Neurophysiol 6:1262–1270. doi:10.1016/j.clinph.2007.12.023

    Article  Google Scholar 

  • Koenig T, Kottlow M, Stein M, Melie-Garcia L (2011) Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Comput Intell Neurosci. doi:10.1155/2011/938925

    PubMed Central  PubMed  Google Scholar 

  • Kottlow M, Praeg E, Luethy C, Jancke L (2011) Artists’ advance: decreased upper alpha power while drawing in artists compared with non-artists. Brain Topogr 4:392–402. doi:10.1007/s10548-010-0163-9

    Article  Google Scholar 

  • Kovalenko LY, Chaumon M, Busch NA (2012) A pool of pairs of related objects (POPORO) for investigating visual semantic integration: behavioral and electrophysiological validation. Brain Topogr 3:272–284. doi:10.1007/s10548-011-0216-8

    Article  Google Scholar 

  • Kutas M, Hillyard SA (1980) Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207:203–205

    Article  CAS  PubMed  Google Scholar 

  • Laganaro M, Perret C (2011) Comparing electrophysiological correlates of word production in immediate and delayed naming through the analysis of word age of acquisition effects. Brain Topogr 1:19–29. doi:10.1007/s10548-010-0162-x

    Article  Google Scholar 

  • Lehmann D (1990) Brain electric microstates and cognition: the atoms of thought. In: John ER Vol. Machinery of the mind. Birkhäuser, Boston, pp 209–224

    Google Scholar 

  • Lehmann D (1987) Principles of spatial analysis. In: Gevins A, Remond A (eds) Methods of analysis of brain electrical and magnetic signals: handbook of electroencephalography and clinical neurophysiology, vol 1. Elsevier, Amsterdam, pp 309–354

    Google Scholar 

  • Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 6:609–621

    Article  Google Scholar 

  • Lehmann D, Skrandies W (1984) Spatial analysis of evoked potentials in man—a review. Prog Neurobiol 3:227–250

    Article  Google Scholar 

  • Lehmann D, Wackermann J, Michel CM, Koenig T (1993) Space-oriented EEG segmentation reveals changes in brain electric field maps under the influence of a nootropic drug. Psychiatry Res 4:275–282

    Article  Google Scholar 

  • Lehmann D, Faber PL, Galderisi S, Herrmann WM, Kinoshita T, Koukkou M, Mucci A, Pascual-Marqui RD, Saito N, Wackermann J, Winterer G, Koenig T (2005) EEG microstate duration and syntax in acute, medication-naive, first-episode schizophrenia: a multi-center study. Psychiatry Res 2:141–156. doi:10.1016/j.pscychresns.2004.05.007

    Article  Google Scholar 

  • Manly BFJ (2007) Randomization. Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall, Boca Raton

    Google Scholar 

  • McCarthy G, Wood CC (1985) Scalp distributions of event-related potentials: an ambiguity associated with analysis of variance models. Electroencephalogr Clin Neurophysiol 3:203–208

    Article  Google Scholar 

  • Megevand P, Quairiaux C, Lascano AM, Kiss JZ, Michel C (2008) A mouse model for studying large-scale neuronal networks using EEG mapping techniques. Neuroimage 42(2):591–602. doi:10.1016/j.neuroimage.2008.05.016

    Article  PubMed  Google Scholar 

  • Michel C, Koenig T, Brandeis D (2009) Electrical neuroimaging in the time domain. In: Michel CM, Koenig T, Brandeis D, Gianotti LRR and Wackermann J, Vol. Electrical Neuroimaging, Cambridge, pp 111–143

    Book  Google Scholar 

  • Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 4:249–264. doi:10.1007/s10548-008-0054-5

    Article  Google Scholar 

  • Nishida K, Morishima Y, Yoshimura M, Isotani T, Irisawa S, Jann K, Dierks T, Strik W, Kinoshita T, Koenig T (2013) EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease. Clin Neurophysiol 6:1106–1114. doi:10.1016/j.clinph.2013.01.005

    Article  Google Scholar 

  • Overney LS, Michel CM, Harris IM, Pegna AJ (2005) Cerebral processes in mental transformations of body parts: recognition prior to rotation. Brain Res Cogn Brain Res 3:722–734. doi:10.1016/j.cogbrainres.2005.09.024

    Article  Google Scholar 

  • Pannekamp A, van der Meer E, Toepel U (2011) Context- and prosody-driven ERP markers for dialog focus perception in children. Brain Topogr 3–4:229–242. doi:10.1007/s10548-011-0194-x

    Article  Google Scholar 

  • Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Tran Biomed Eng 7:658–665. doi:10.1109/10.391164

    Article  Google Scholar 

  • Pegna AJ, Khateb A, Spinelli L, Seeck M, Landis T, Michel CM (1997) Unraveling the cerebral dynamics of mental imagery. Hum Brain Mapp 5(6):410–421. doi:10.1002/(SICI)1097-0193(1997)5:6<410:AID-HBM2>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  • Perret C, Laganaro M (2012) Comparison of electrophysiological correlates of writing and speaking: a topographic ERP analysis. Brain Topogr 1:64–72. doi:10.1007/s10548-011-0200-3

    Article  Google Scholar 

  • Pourtois G (2011) Early error detection predicted by reduced pre-response control process: an ERP topographic mapping study. Brain Topogr 4:403–422. doi:10.1007/s10548-010-0159-5

    Article  Google Scholar 

  • Pourtois G, Delplanque S, Michel C, Vuilleumier P (2008) Beyond conventional event-related brain potential (ERP): exploring the time-course of visual emotion processing using topographic and principal component analyses. Brain Topogr 20(4):265–277. doi:10.1007/s10548-008-0053-6

    Article  PubMed  Google Scholar 

  • Spierer L, Tardif E, Sperdin H, Murray MM, Clarke S (2007) Learning-induced plasticity in auditory spatial representations revealed by electrical neuroimaging. J Neurosci 20:5474–5483. doi:10.1523/JNEUROSCI.0764-07.2007

    Article  Google Scholar 

  • Stein M, Dierks T, Brandeis D, Wirth M, Strik W, Koenig T (2006) Plasticity in the adult language system: a longitudinal electrophysiological study on second language learning. Neuroimage 33(2):774–783. doi:10.1016/j.neuroimage.2006.07.008

    Article  CAS  PubMed  Google Scholar 

  • Stevenson RA, Bushmakin M, Kim S, Wallace MT, Puce A, James TW (2012) Inverse effectiveness and multisensory interactions in visual event-related potentials with audiovisual speech. Brain Topogr 3:308–326. doi:10.1007/s10548-012-0220-7

    Article  Google Scholar 

  • Strik W, Fallgatter AJ, Brandeis D, Pascual-Marqui RD (1998) Three-dimensional tomography of event-related potentials during response inhibition: evidence for phasic frontal lobe activation. Electroencephalogr Clin Neurophysiol 4:406–413

    Article  Google Scholar 

  • Taha H, Ibrahim R, Khateb A (2013) How does arabic orthographic connectivity modulate brain activity during visual word recognition: an ERP study. Brain Topogr 2:292–302. doi:10.1007/s10548-012-0241-2

    Article  Google Scholar 

  • Tzovara A, Murray MM, Michel C, De Lucia M (2012a) A tutorial review of electrical neuroimaging from group-average to single-trial event-related potentials. Dev Neuropsychol 6:518–544. doi:10.1080/87565641.2011.636851

    Article  Google Scholar 

  • Tzovara A, Murray MM, Plomp G, Herzog MH, Michel CM, De Lucia M (2012b) Decoding stimulus-related information from single-trial EEG responses based on voltage topographies. Pattern Recogn 6:2109–2122

    Article  Google Scholar 

  • Tzovara A, Rossetti AO, Spierer L, Grivel J, Murray MM, Oddo M, De Lucia M (2013) Progression of auditory discrimination based on neural decoding predicts awakening from coma. Brain 1:81–89. doi:10.1093/brain/aws264

    Article  Google Scholar 

  • Wackermann J, Lehmann D, Michel CM, Strik WK (1993) Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. Int J Psychophysiol 3:269–283

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Koenig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenig, T., Stein, M., Grieder, M. et al. A Tutorial on Data-Driven Methods for Statistically Assessing ERP Topographies. Brain Topogr 27, 72–83 (2014). https://doi.org/10.1007/s10548-013-0310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0310-1

Keywords

Navigation