Skip to main content

Advertisement

Log in

A comparison of serum miRNAs influencing metastatic growth of EMT6 vs 4THM tumor cells in wild-type and CD200R1KO mice

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

We investigated whether miRNAs in exosomes from EMT6 or 4THM tumor-bearing mice played a role in regulating inflammatory cytokine expression and/or metastasis in WT mice injected with EMT6 and/or 4THM tumor cells.

Methods

EMT6 tumors in BALB/c CD200R1KO mice resolve following surgical resection of localized tumor and immunization with irradiated EMT6 cells along with CpG as adjuvant. Wild-type (WT) animals treated in the same fashion develop pulmonary and liver metastases within 20 days of surgery. DLNs from CD200R1KO mice contain no tumor cells detectable at limiting dilution. In contrast, 4THM tumor cells injected into CD200R1KO show increased metastasis compared with WT mice. Transfer of serum exosomes from 4THM tumor-bearing mice to WT animals increased metastasis of EMT6 tumors, an effect attenuated by anti-IL-6 antibody. We compared miRNA expression in exosomes from the serum of 4THM/EMT6 WT or CD200R1KO tumor-bearing mice, and the effects of antagomirs to miRNAs on tumor growth.

Results

Complex changes in miRNA expression were observed in the isolated exosomes. Some miRNAs, including miR155, have been reported to potentiate inflammatory responses and augment inflammatory cytokine expression. Expression of miR155 increased in exosomes from 4THM relative to EMT6 tumor bearers, and antagomirs to miR155 attenuated tumor growth and metastasis, and improved survival, following infusion into WT mice. Antagomirs to the miR205 family were thought to affect metastasis by targeting epithelial-to-mesenchymal transition (EMT), increased growth and metastasis in both 4THM and EMT6 tumor-bearing mice, and decreased survival, with some modulation of inflammatory cytokine production.

Conclusions

Multiple pathways are implicated in differential metastasis of EMT6/4THM, and targeting these may have clinical utility in human breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siva A, Xin H, Qin F, Oltean D, Bowdish KS, Kretz-Rommel A (2008) Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200 Cancer Immunol. Immunotherapy 57:987–996

    Article  CAS  Google Scholar 

  2. Moreaux J, Veyrune JL, Reme T, DeVos J, Klein B (2008) CD200: a putative therapeutic target in cancer. Biochem Biophys Res Commun 366:117–122

    Article  CAS  PubMed  Google Scholar 

  3. McWhirter JR, KretzRommel A, Saven A et al (2006) Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc Nat Acad Sci USA 103:1041–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kawasaki BT, Mistree T, Hurt EM, Kalathur M, Farrar WL (2007) Co-expression of the tolerogenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun 364:778–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gorczynski RM, Chen Z, Diao J et al (2010) Breast cancer cell CD200 expression regulates immune response to EMT6 tumor cells in mice. Breast Cancer Res Treat 123:405–415

    Article  CAS  PubMed  Google Scholar 

  6. Gorczynski RM, Clark DA, Erin N, Khatri I (2011) Role of CD200 in regulation of metastasis of EMT6 tumor cells in mice. Breast Cancer Res Treatment 130:49–60

    Article  CAS  Google Scholar 

  7. Talebian F, Liu JQ, Liu ZM, Khattabi M, He Y, Ganju R (2012) Bai XF Melanoma cell expression of CD200 inhibits tumor formation and lung metastasis via inhibition of myeloid cell function. PLoS One 7:e31442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Erin N, Podnos A, Tanriover G, Duymus O, Cote E, Khatri I, Gorczynski RM (2014) Bidirectional effect of CD200 on breast cancer development and metastasis with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response. Oncogene 34:3860–3870

  9. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Cancer Rev 6:24–37

  10. Gorczynski RM, Erin N, Zhu F (2016) Serum-derived exosomes from mice with highly metastatic breast cancer transfer increased metastatic capacity to a poorly metastatic tumor. Cancer Medicine. doi:10.1002/cam4.575

  11. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, RemyMartin JP et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3- dependent immunosuppressive function of mouse and human myeloid- derived suppressor cells. J Clin Invest 120:457–471

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gehrmann U, Hiltbrunner S, Georgoudaki AM, Karlsson MC, Näslund TI, Gabrielsson S (2013) Synergistic induction of adaptive antitumor immunity by codelivery of antigen with α-galactosylceramide on exosomes. Cancer Res 73:3865–3876

    Article  CAS  PubMed  Google Scholar 

  13. Luga V, Wrana J (2013) Tumor-stroma interaction: revealing fibroblast-secreted exosomes as potent regulators of wnt-planar cell polarity signaling in cancer metastasis. Cancer Res 73:6843–6847

    Article  CAS  PubMed  Google Scholar 

  14. Roccaro AM, Sacco A, Maiso P, Azab AK, Tai Y-T, Reagan M et al (2013) BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 123:1542–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu S, Zhu W, Zhang L-F, Pei M, Liu M-F (2014) MicroRNA-155 broadly orchestrates inflammation-induced changes of microRNA expression in breast cancer. Cell Rex 24:254–257

    Article  CAS  Google Scholar 

  16. Yao Y, Li G, Wu J, Zhnag X, Wang J (2015) Inflammatory response of macrophages cultured with Helicobacter pylori strains was regulated by miR-155. Int J Clin Exp Pathol 8:4545–4554

    PubMed  PubMed Central  Google Scholar 

  17. Qu YL, Wang HF, Sun ZQ, Tang Y, Han XN, Yu XB, Liu K (2015) Up-regulated miR-155-5p promotes cell proliferation, invasion and metastasis in colorectal carcinoma Int. J Clin Exp Pathol 8:6988–6994

    Google Scholar 

  18. Ma L, Xue HB, Wang F, Shu CM, Zhang JH (2015) MicroRNA-155 may be involved in the pathogenesis of atopic dermatitis by modulating the differentiation and function of T helper type 17 (Th17) cells Clin. Exp Immunol 181:142–149

    Article  CAS  Google Scholar 

  19. Wu H, Zhu S, Mo YY (2009) Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 19:439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elgamal OA, Park JK, Gusev Y, Azevedo-POuly AC, Jiang J, Roopra A, Schmittgen TD (2013 Oct 2) Tumor suppressive function of mir-205 in breast cancer is linked to HMGB3 regulation. PLoS One 8(10):e76402. doi:10.1371/journal.pone.0076402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Solingen C, Seghers L, Bijkerk R, Duijs JM, Roeten MK, van Oeveren-Rietdijk AM, Baelde HJ, Monge M, Vos JB, de Boer HC, Quax PH, Rabelink TJ, van Zonneveld AJ (2009) Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 13:1577–1585

    Article  PubMed  Google Scholar 

  22. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  Google Scholar 

  23. Podnos A, Clark DA, Erin N, Yu K, Gorczynski RM (2012) Further evidence for a role of tumor CD200 expression in breast cancer metastasis: decreased metastasis in CD200R1KO mice or using CD200-silenced EMT6. Breast Cancer Res Treat 136:117–127

    Article  CAS  PubMed  Google Scholar 

  24. Camploi M, Changg CC, OLdford SA (2004) HLA antigen chnages in malignant tumors of mammary epithelial origin: molecular mechanisms and clinical implications. Breast Dis 2004:105–25

  25. Menard S, Tomasic G, Casalini P (1997) Lymphoid infiltration as a prognostic variable for early onset breast carcinomas. Clin Cancer Res 3:817–819

    CAS  PubMed  Google Scholar 

  26. Al-Haji M, Wicha MS, Benito-Hernandez A, Morrison SJ (2003) Clarke MF Prospective identification of tumorigenic breast cancer cells. ProcNatlAcad Sci USA 100:3983–3988

    Article  Google Scholar 

  27. Manai SA, Guo W, Liao MJ (2008) The epithelial-mesenchymal-transition generates cells with properties of stem cells. Cell 133:704–715

    Article  Google Scholar 

  28. Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL-6 secretion. ProcNatl Acad Sci USA 108:1397–1402

    Article  CAS  Google Scholar 

  29. Oh K, Lee OY, Shon SY, Nam O, Ryu PM, Seo MW, Lee DS (2013) A mutual activation loop between breast cancer cells and myeloid-derived suppressor cells facilitates spontaneous metastasis through IL-6 trans-signaling in a murine model. Breast Cancer Res 15(5):R79

  30. Roy LD, Sahraei M, Schettini JL, Gruber HE, Besmer DM, Mukherjee P (2014 Mar) Systemic neutralization of IL-17A significantly reduces breast cancer associated metastasis in arthritic mice by reducing CXCL12/SDF-1 expression in the metastatic niches. BMC Cancer 27(14):225. doi:10.1186/1471-2407-14-225

    Article  Google Scholar 

  31. Zheng X, Choppa M, Lua Y, Bullera B, Jianga F (2013) MiR-15b and miR-152 reduce glioma cell invasion and angiogenesis via NRP-2 and MMP-3. Cancer Lett 146:146–154

    Article  Google Scholar 

  32. Crawford M, Batte K, Yu L, Wu X, Nuovo GJ, Marsh CB, Otterson GA, Nana-Sinkam SP (2009) microRNA 133B targets prosurvival molecules MCL-1 and BCL2L2 in lung cancer. Biochem Biphys Res Commun 388:483–4833

    Article  CAS  Google Scholar 

  33. Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, et al (2010) miR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer 127:2804–2814

  34. Köberle V, Kronenberger B, Pleli T, Trojan J, Imelmann E, Peveling-Oberhag J et al (2013) Serum microRNA-1 and microRNA-122 are prognostic markers in patients with hepatocellular carcinoma. Eur J Cancer 49:3442–3449

    Article  PubMed  Google Scholar 

  35. Lowery AJ, Miller N, Devaney A, McNeill RE, Davoren PA, Lemetre C, et al (2009) MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res Treat. doi:10.1186/bcr2257

  36. Wang B, Li J, Sun M, Sun L, Zhang X (2014) MiRNA expression in breast cancer varies with lymph node metastasis and other clinicopathologic features. Int Union Biochem Mol Biol 66:371–377

    Article  Google Scholar 

  37. Yamamoto N, Kinoshita T, Nohata N, Yoshino H, Itesako T, Fujimura L et al (2013) Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma. Int J Oncol 43:1855–1863

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu J, Mao Q, Liu Y, Hao X, Zhang S, Zhang J (2013) Analysis of miR-205 and miR-155 expression in the blood of breast cancer patients. Chin J Cancer Res 25:46–54

  39. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    Article  CAS  PubMed  Google Scholar 

  40. Jiang S, Zhang H-W, Lu M-H, He X-H, Li Y, Gu H et al (2010) MicroRNA-155 functions as an OncomiR in breast cancer by targeting the Suppressor of Cytokine Signaling 1 Gene. Cancer Res 70:3119–3127

    Article  CAS  PubMed  Google Scholar 

  41. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF et al (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102:3627–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y et al (2007) Regulation of the germinal center response by microRNA-155. Science 316:604–608

    Article  CAS  PubMed  Google Scholar 

  44. Asirvatham AJ, Gregorie CJ, Hu Z, Magner WJ, Tomasi TB (2008) MicroRNA targets in immune genes and the Dicer/argonaute and ARE machinery components. Mol Immunol 45:1995–2006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant from the CIHR (Canada) to RMG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reginald M. Gorczynski.

Ethics declarations

Conflicts of interest

All authors confirm they have no conflicts of interest to declare.

Ethics Review

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted and were performed under supervision of a local institutional review board, certified by the Canadian Council on Animal Care (protocol AUP#1.18).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorczynski, R.M., Zhu, F., Chen, Z. et al. A comparison of serum miRNAs influencing metastatic growth of EMT6 vs 4THM tumor cells in wild-type and CD200R1KO mice. Breast Cancer Res Treat 162, 255–266 (2017). https://doi.org/10.1007/s10549-017-4128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4128-5

Keywords

Navigation