Skip to main content

Advertisement

Log in

Removal of aromatic hydrocarbons from aquifers by oxidation coupled with dissimilatory bacterial reduction of iron

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Dissimilatory iron-reducing bacteria derive energy needed for growth and function by oxidation of organic compounds or molecular hydrogen coupled with reduction of iron(III) to iron(II) in subsurface environments. In this work, we used the indicated bacteria in an anaerobic environment for oxidation of benzene, toluene, ethylbenzene, and xylenes (a mixture of o-, m-, and p-xylenes) (BETX), which are aquifer contaminants. We show that oxidation of aromatic hydrocarbons coupled with bacterial reduction of iron follows first-order kinetics. The rate constant is maximum for an aromatic hydrocarbon:Fe ratio equal to 1. The oxidation rate constant increases in the series benzene < toluene < ethylbenzene < xylenes. The aromatic hydrocarbon degradation efficiency increases as the concentration of the substrate (citric acid) increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. R. Lovley, J Ind. Microb. Biotechnol. 18, 75–81 (1997).

    Article  CAS  Google Scholar 

  2. J. Lemaire, V. Croze, J. Maier, and M. Simonnot, Chemosphere, 84, 1181–1187 (2011).

    Article  CAS  Google Scholar 

  3. M. J. Lonborg, P. Engesgaard, P. L. Bjerg, and D. Rosbjerg, J. Contam. Hydrol. 87, 191-210 (2006).

    Article  CAS  Google Scholar 

  4. K. Rugge, P. L. Bjerg, and T. H. Christensen, Environ. Sci. Technol., 29, 1395-1400 (1995).

    Article  Google Scholar 

  5. T. B. Hofstetter, C. G. Heijman, S. B. Haderlein, C. Holliger, and R. P. Schwarzenbach, Environ. Sci. Technol., 33, 1479-1487 (1999).

    Article  CAS  Google Scholar 

  6. C. M. Hansel, S. G. Benner, J. Neiss, A. Dohnalkova, R. K. Kukkadapu, and S. Fendorf, Geochim. Cosmochim. Acta, 67, 2977–2992 (2003).

    Article  CAS  Google Scholar 

  7. N. B. Tobler, T. B. Hofstetter, K. L. Straub, D. Fontana, and R. P. Schwarzenbach, Environ. Sci. Technol., 41, 7765-7772 (2007).

    Article  CAS  Google Scholar 

  8. C. G. Heijman, E. Grieder, C. Holliger, and R. P. Schwarzenbach, Environ. Sci. Technol., 29, 775–783 (1995).

    Article  CAS  Google Scholar 

  9. N. B. Tobler, T. B. Hofstetter, and R. P. Schwarzenbach, Environ. Sci. Technol. 41, 7773–7780 (2007).

    Article  CAS  Google Scholar 

  10. J. Clement, J. Shrestha, J. G. Ehrenfeld, and P. R. Jaffe, Soil Biol. Biochem., 37, 2323–2328 (2005).

    Article  CAS  Google Scholar 

  11. W. R. Villatoro-Monzón, M. G. Morales-Ibarria, E. K. Velázquez, H. Ramírez-Saad, and E. Razo-Flores, Water Air Soil Pollut., 192, 165–172 (2008).

    Article  Google Scholar 

  12. S. Botton and J. R. Parsons, Biodegradation, 18, 371-381 (2007).

    Article  CAS  Google Scholar 

  13. D. W. Major, C. I. Mayfield, and J. F. Barker, Ground Water, 26, 8-14 (1987).

    Article  Google Scholar 

  14. M. L. McCormick, E. J. Bouwer, and P. Adriaens, Environ. Sci. Technol., 36, 403-410 (2002).

    Article  CAS  Google Scholar 

  15. C. G. Heijman, E. Grieder, C. Holliger, and R. P. Schwarzenbach, Environ. Sci. Technol., 29, 775–783 (1995).

    Article  CAS  Google Scholar 

  16. M. Tandukar, S. J. Huber, T. Onodera, and S. G. Pavlostathis, Environ. Sci. Technol., 43, 8159–8165 (2009).

    Article  CAS  Google Scholar 

  17. G. Wang, L. P. Huang, and Y. F. Zhang, Biotechnol. Lett., 30, 1959–1966 (2008).

    Article  CAS  Google Scholar 

  18. S. Botton and J. R. Parsons, Environ. Toxicol. Chem., 25, 2630–2638 (2006).

    Article  CAS  Google Scholar 

  19. J. M. Tor and D. R. Lovley, Environ. Microbiol., 3, 281–287 (2001).

    Article  CAS  Google Scholar 

  20. D. R. Lovley, J. C. Woodward, and F. H. Chapelle, Nature, 370, 128–131 (1994).

    Article  CAS  Google Scholar 

  21. D. R. Lovley and D. J. Lonergan, Environ. Microbiol., 56, 1858–1864 (1990).

    CAS  Google Scholar 

  22. D. Qu and S. Schnell, Acta Microbiol. Sin., 21, 745–749 (2001).

    Google Scholar 

  23. “Water quality-determination of iron-phenanthroline - spectrophotometry,” Environmental Protection Standard of China, HJ/T 345 (2007).

  24. R. Swisher and G. C. Carroll, Microb. Ecol., 6, 217–226 (1980).

    Article  Google Scholar 

  25. G. Adam and H. Duncan, Soil Biol. Biochem., 33, 943–951 (2001).

    Article  CAS  Google Scholar 

  26. C. Liu, S. Kota, J. M. Zachara, J. K. Fredrickson, and C. K. Brinkman, Environ. Sci. Technol., 35, 2482–2490 (2001).

    Article  CAS  Google Scholar 

  27. C. Liu, S. Kota, J. M. Zachara, Y. A. Gorby, J. E. Szecsody, and C. F. Brown, Environ. Sci. Technol., 35, 1385–1393 (2001).

    Article  CAS  Google Scholar 

  28. S. Bonneville, T. Behrends, P. Van Cappellen, C. Hyacinthe, and W. F. M. Roling, Geochimica, 70, 5842–5854 (2006).

    Article  CAS  Google Scholar 

  29. S. Bonneville, P. Van Cappellen, and T. Behrends, Chem. Geol., 212, 255–268 (2004).

    Article  CAS  Google Scholar 

  30. M. L. McCormick, E. J. Bouwer, and P. Adriaens, Environ. Sci. Technol., 36, 403–401 (2002).

    Google Scholar 

  31. E. E. Roden and M. M. Urrutia, Environ. Sci. Technol., 33, 1847–1853 (1999).

    Article  CAS  Google Scholar 

  32. M. K. Jahn, Appl. Environ. Microbiol., 71, 3355–3358 (2005).

    Article  CAS  Google Scholar 

  33. M. E. Caldwell and J. M. Suflita, Environ. Sci. Technol., 34, 1216–1220 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 1, pp. 44 – 49, January – February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun, D., Xiaolan, M. & Jingjie, L. Removal of aromatic hydrocarbons from aquifers by oxidation coupled with dissimilatory bacterial reduction of iron. Chem Technol Fuels Oils 49, 70–80 (2013). https://doi.org/10.1007/s10553-013-0413-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-013-0413-0

Key words

Navigation