Skip to main content
Log in

Regional functional recovery after acute myocardial infarction: a cardiac magnetic resonance long-term study

  • Original paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

We sought to analyze the trend of functional recovery after successful reperfused ST-elevation myocardial infarction (STEMI) in an optimally treated patient group over a 14 month follow-up in relation to ischemia-time and the presence of microvascular obstruction (MVO). First-pass perfusion-, cine- and late enhancement (LE)- cardiac MR were performed in 40 patients (33 male and 7 female, 54.8 ± 12.3 years) within 6 days as well as 4 and 14 months after successful primary percutaneous coronary intervention for STEMI. Significant recovery of segmental wall thickening (SWT %) occurred exclusively in infarcted segments reperfused within 4 h after symptom onset (group 1 with pain-to-balloon time <2 h: 59 ± 4 to 70 ± 4%; P < 0.02) (group 2 with pain-to-balloon-time 2–4 h: 51 ± 4 to 59 ± 3%, P < 0.05) during the first 4 months, whereas changes thereafter were not significant (P = NS). Infarcted segments with MVO showed lowest regional myocardial function at any time of assessment (all P < 0.001) and a lack of significant recovery during the study period. Significant recovery of regional myocardial function is related to rapid revascularization of the infarct-related artery and the absence of MVO. Improvement of SWT occurred exclusively within the first 4 months after acute myocardial infarction and remained unchanged thereafter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Holman BL, Goldhaber SZ, Kirsch CM, Polak JF, Friedman BJ, English RJ, Wynne J (1982) Measurement of infarct size using single photon emission computed tomography and technetium-99 m pyrophosphate: a description of the method and comparison with patient prognosis. Am J Cardiol 50:503–511

    Article  PubMed  CAS  Google Scholar 

  2. Ahnve S, Gilpin E, Henning H, Curtis G, Collins D, Ross J Jr (1986) Limitations and advantages of the ejection fraction for defining high risk after acute myocardial infarction. Am J Cardiol 58:872–878

    Article  PubMed  CAS  Google Scholar 

  3. Sanz G, Castaner A, Betriu A, Magrina J, Roig E, Coll S, Pare JC, Navarro-Lopez F (1982) Determinants of prognosis in survivors of myocardial infarction: a prospective clinical angiographic study. N Engl J Med 306:1065–1070

    Article  PubMed  CAS  Google Scholar 

  4. Weiss JL, Marino PN, Shapiro EP (1991) Myocardial infarct expansion: recognition, significance and pathology. Am J Cardiol 68:35D–40D

    Article  PubMed  CAS  Google Scholar 

  5. De Luca G, van't Hof AW, de Boer MJ, Ottervanger JP, Hoorntje JC, Gosselink AT, Dambrink JH, Zijlstra F, Suryapranata H (2004) Time-to-treatment significantly affects the extent of ST-segment resolution and myocardial blush in patients with acute myocardial infarction treated by primary angioplasty. Eur Heart J 25:1009–1013

    Article  PubMed  Google Scholar 

  6. Thiele H, Kappl MJ, Linke A, Erbs S, Boudriot E, Lembcke A, Kivelitz D, Schuler G (2007) Influence of time-to-treatment, TIMI-flow grades, and ST-segment resolution on infarct size and infarct transmurality as assessed by delayed enhancement magnetic resonance imaging. Eur Heart J 28:1433–1439

    Article  PubMed  Google Scholar 

  7. Reffelmann T, Hale SL, Li G, Kloner RA (2002) Relationship between no reflow and infarct size as influenced by the duration of ischemia and reperfusion. Am J Physiol Heart Circ Physiol 282:H766–H772

    PubMed  CAS  Google Scholar 

  8. Klug G, Trieb T, Schocke M, Nocker M, Skalla E, Mayr A, Nowosielski M, Pedarnig K, Bartel T, Moes N, Pachinger O, Metzler B (2009) Quantification of regional functional improvement of infarcted myocardium after primary PTCA by contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 29:298–304

    Article  PubMed  Google Scholar 

  9. Alpert JS, Thygesen K, Antman E, Bassand JP (2000) Myocardial infarction redefined–a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36:959–969

    Article  PubMed  CAS  Google Scholar 

  10. Mayr A, Klug G, Schocke M, Trieb T, Mair J, Pedarnig K, Pachinger O, Jaschke W, Metzler B (2011) Late microvascular obstruction after acute myocardial infarction: relation with cardiac and inflammatory markers. Int J Cardiol [Epub ahead of print]

  11. Gerber BL, Rochitte CE, Melin JA, McVeigh ER, Bluemke DA, Wu KC, Becker LC, Lima JA (2000) Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation 101:2734–2741

    Article  PubMed  CAS  Google Scholar 

  12. Weir RA, Murphy CA, Petrie CJ, Martin TN, Balmain S, Clements S, Steedman T, Wagner GS, Dargie HJ, McMurray JJ (2010) Microvascular obstruction remains a portent of adverse remodeling in optimally treated patients with left ventricular systolic dysfunction after acute myocardial infarction. Circ Cardiovasc Imaging 3:360–367 Epub 2010 Mar 26

    Article  PubMed  Google Scholar 

  13. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  14. Beek AM, Kühl HP, Bondarenko O, Twisk JW, Hofman MB, van Dockum WG, Visser CA, van Rossum AC (2003) Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 42:895–901

    Article  PubMed  Google Scholar 

  15. Bondarenko O, Beek AM, Hofman MB, Kühl HP, Twisk JW, van Dockum WG, Visser CA, van Rossum AC (2005) Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. Cardiovasc Magn Reson 7:481–485

    Article  Google Scholar 

  16. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  PubMed  CAS  Google Scholar 

  17. Mayr A, Mair J, Schocke M, Klug G, Pedarnig K, Haubner BJ, Nowosielski M, Grubinger T, Pachinger O, Metzler B (2011) Predictive value of NT-pro BNP after acute myocardial infarction: relation with acute and chronic infarct size and myocardial function. Int J Cardiol 47:118–123

    Article  Google Scholar 

  18. Mayr A, Mair J, Klug G, Schocke M, Pedarnig K, Trieb T, Pachinger O, Jaschke W, Metzler B (2011) Cardiac troponin T and creatine kinase predict mid-term infarct size and left ventricular function after acute myocardial infarction: A cardiac MR study. J Magn Reson Imaging 33:847–854

    Article  PubMed  Google Scholar 

  19. Moller JE, Hillis GS, Oh JK, Reeder GS, Gersh BJ, Pellikka PA (2006) Wall motion score index and ejection fraction for risk stratification after acute myocardial infarction. Am Heart J 151:419–425

    Article  PubMed  Google Scholar 

  20. Galasko GI, Basu S, Lahiri A, Senior R (2001) A prospective comparison of echocardiographic wall motion score index and radionuclide ejection fraction in predicting outcome following acute myocardial infarction. Heart 86:271–276

    Article  PubMed  CAS  Google Scholar 

  21. Carluccio E, Tommasi S, Bentivoglio M, Buccolieri M, Prosciutti L, Corea L (2000) Usefulness of the severity and extent of wall motion abnormalities as prognostic markers of an adverse outcome after a first myocardial infarction treated with thrombolytic therapy. Am J Cardiol 85:411–415

    Article  PubMed  CAS  Google Scholar 

  22. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    Article  PubMed  CAS  Google Scholar 

  23. Greaves K, Dixon SR, Fejka M, O’Neill WW, Redwood SR, Marber MS, Senior R (2003) Myocardial contrast echocardiography is superior to other known modalities for assessing myocardial reperfusion after acute myocardial infarction. Heart 89:139–144

    Article  PubMed  CAS  Google Scholar 

  24. Brodie BR, Stuckey TD, Wall TC, Kissling G, Hansen CJ, Muncy DB, Weintraub RA, Kelly TA (1998) Importance of time to reperfusion for 30-day and late survival and recovery of left ventricular function after primary angioplasty for acute myocardial infarction. J Am Coll Cardiol 32:1312–1319

    Article  PubMed  CAS  Google Scholar 

  25. Cannon CP, Gibson CM, Lambrew CT, Shoultz DA, Levy D, French WJ, Gore JM, Weaver WD, Rogers WJ, Tiefenbrunn AJ (2000) Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. JAMA 283:2941–2947

    Article  PubMed  CAS  Google Scholar 

  26. Antoniucci D, Valenti R, Migliorini A, Moschi G, Trapani M, Buonamici P, Cerisano G, Bolognese L, Santoro GM (2002) Relation of time to treatment and mortality in patients with acute myocardial infarction undergoing primary coronary angioplasty. Am J Cardiol 89:1248–1252

    Article  PubMed  Google Scholar 

  27. Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM (2001) Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 104:1101–1107

    Article  PubMed  CAS  Google Scholar 

  28. Ingkanisorn WP, Rhoads KL, Aletras AH, Kellman P, Arai AE (2004) Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction. J Am Coll Cardiol 43:2253–2259

    Article  PubMed  Google Scholar 

  29. Petersen SE, Voigtlander T, Kreitner KF, Horstick G, Ziegler S, Wittlinger T, Abegunewardene N, Schmitt M, Schreiber WG, Kalden P, Mohrs OK, Lippold R, Thelen M, Meyer J (2003) Late improvement of regional wall motion after the subacute phase of myocardial infarction treated by acute PTCA in a 6-month follow-up. J Cardiovasc Magn Reson 5:487–495

    Article  PubMed  CAS  Google Scholar 

  30. Gerber BL, Garot J, Bluemke DA, Wu KC, Lima JA (2002) Accuracy of contrast enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation 106:1083–1089

    Article  PubMed  Google Scholar 

  31. Ibrahim T, Hackl T, Nekolla SG, Breuer M, Feldmair M, Schömig A, Schwaiger M (2010) Acute myocardial infarction: serial cardiac MR imaging shows a decrease in delayed enhancement of the myocardium during the 1st week after reperfusion. Radiology 254:88–97

    Article  PubMed  Google Scholar 

  32. Engblom H, Hedström E, Heiberg E, Wagner GS, Pahlm O, Arheden H (2009) Rapid initial reduction of hyperenhanced myocardium after reperfused first myocardial infarction suggests recovery of the peri-infarction zone: one-year follow-up by MRI. Circ Cardiovasc Imaging 2:47–55

    Article  PubMed  Google Scholar 

  33. Christian TF, Schwartz RS, Gibbons RJ (1992) Determinants of infarct size in reperfusion therapy for acute myocardial infarction. Circulation 86:81–90

    Article  PubMed  CAS  Google Scholar 

  34. Verma S, Fedak PW, Weisel RD, Butany J, Rao V, Maitland A, Li RK, Dhillon B, Yau TM (2002) Fundamentals of reperfusion injury for the clinical cardiologist. Circulation 105:2332–2336

    Article  PubMed  Google Scholar 

  35. Judd RM, Lugo-Olivieri CH, Arai M, Kondo T, Croisille P, Lima JA, Mohan V, Becker LC, Zerhouni EA (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92:1902–1910

    Article  PubMed  CAS  Google Scholar 

  36. Kim RJ, Chen EL, Lima JA, Judd RM (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94:3318–3326

    Article  PubMed  CAS  Google Scholar 

  37. Nagao M, Higashino H, Matsuoka H, Kawakami H, Mochizuki T, Murase K, Uemura M, Kouno T (2008) Clinical importance of microvascular obstruction on contrast enhanced MRI in reperfused acute myocardial infarction. Circ J 72:200–204

    Article  PubMed  Google Scholar 

  38. Muhling OM, Dickson ME, Zenovich A, Huang Y, Wilson BV, Wilson RF, Anand IS, Seethamraju RT, Jerosch-Herold M, Wilke NM (2001) Quantitative magnetic resonance first-pass perfusion analysis: inter- and intraobserver agreement. J Cardiovasc Magn Reson 3:247–256

    Article  PubMed  CAS  Google Scholar 

  39. Arai AE (2000) Magnetic resonance first-pass myocardial perfusion imaging. Top Magn Reson Imaging 11:383–398

    Article  PubMed  CAS  Google Scholar 

  40. Ito H, Tomooka T, Sakai N, Yu H, Higashino Y, Fujii K, Masuyama T, Kitabatake A, Minamino T (1992) Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 85:1699–1705

    Article  PubMed  CAS  Google Scholar 

  41. Baks T, van Geuns RJ, Biagini E, Wielopolski P, Mollet NR, Cademartiri F, van der Giessen WJ, Krestin GP, Serruys PW, Duncker DJ, de Feyter PJ (2006) Effects of primary angioplasty for acute myocardial infarction on early and late infarct size and left ventricular wall characteristics. J Am Coll Cardiol 47:40–44

    Article  PubMed  Google Scholar 

  42. Ripa RS, Nilsson JC, Wang Y, Sondergaard L, Jorgensen E, Kastrup J (2007) Short-and long-term changes in myocardial function, morphology, edema, and infarct mass after ST-segment elevation myocardial infarction evaluated by serial magnetic resonance imaging. Am Heart J 154:929–936

    Article  PubMed  Google Scholar 

  43. Mitchell GF, Lamas GA, Vaughan DE, Pfeffer MA (1992) Left ventricular remodeling in the year after first anterior myocardial infarction: a quantitative analysis of contractile segment lengths and ventricular shape. J Am Coll Cardiol 19:1136–1144

    Article  PubMed  CAS  Google Scholar 

  44. Flather MD, Yusuf S, Køber L, Pfeffer M, Hall A, Murray G, Torp-Pedersen C, Ball S, Pogue J, Moyé L, Braunwald E (2000) Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. ACE-Inhibitor Myocardial Infarction Collaborative Group. Lancet 355:1575–1581

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Metzler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayr, A., Pedarnig, K., Klug, G. et al. Regional functional recovery after acute myocardial infarction: a cardiac magnetic resonance long-term study. Int J Cardiovasc Imaging 28, 1445–1453 (2012). https://doi.org/10.1007/s10554-011-9951-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-011-9951-x

Keywords

Navigation