Skip to main content

Advertisement

Log in

Three-dimensional printed models in congenital heart disease

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The purpose of this article is to discuss technical considerations and current applications of three-dimensional (3D) printing in congenital heart disease (CHD). CHD represent an attractive field for the application of 3D printed models, with consistent progress made in the past decade. Current 3D models are able to reproduce complex cardiac and extra-cardiac anatomy including small details with very limited range of errors (<1 mm), so this tool could be of value in the planning of surgical or percutaneous treatments for selected cases of CHD. However, the steps involved in the building of 3D models, consisting of image acquisition and selection, segmentation, and printing are highly operator dependent. Current 3D models may be rigid or flexible, but unable to reproduce the physiologic variations during the cardiac cycle. Furthermore, high costs and long average segmentation and printing times (18–24 h) limit a more extensive use. There is a need for better standardization of the procedure employed for collection of the images, the segmentation methods and processes, the phase of cardiac cycle used, and in the materials employed for printing. More studies are necessary to evaluate the diagnostic accuracy and cost-effectiveness of 3D printed models in congenital cardiac care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CHD:

Congenital heart disease

3D:

Three dimensional

CT:

Computed tomography

MRI:

Magnetic resonance imaging

References

  1. Farooqui KM, Sengputa P (2015) Echocardiography and three-dimensional Printing: sound ideas to touch a heart. J Am Soc Echocardiogr 28:398–403

    Article  Google Scholar 

  2. Olivieri L, Krieger A, Nath D, Loke YH, Kim P, Sable CA (2015) Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J Am Soc Echocardiogr 28:392–397

    Article  PubMed  Google Scholar 

  3. Sodian R, Schmauss D, Schmitz C, Bigdeli A, Haeberle S, Schmoeckel M et al (2009) 3-dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement. Ann Thorac Surg 88:974–978

    Article  PubMed  Google Scholar 

  4. Ngan EM, Rebeyka IM, Ross DB, Hirji M, Wolfaardt JF, Seelaus R et al (2006) The rapid prototyping of anatomic models in pulmonary atresia. J Thorac Cardiovasc Surg 132:264–269

    Article  PubMed  Google Scholar 

  5. Noecker AM, Chen JF, Zhou Q, White RD, Kopcak MW, Arruda MJ et al (2006) Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J 52:349–353

    Article  PubMed  Google Scholar 

  6. Sodian R, Weber S, Markert M, Rassoulian D, Kaczmarek I, Lueth TC et al (2007) Stereolithographic models for surgical planning in congenital heart surgery. Ann Thorac Surg 83:1854–1857

    Article  PubMed  Google Scholar 

  7. Schievano S, Migliavacca F, Coats L, Khambadkone S, Carminati M, Wilson N et al (2007) Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology 242:490–497

    Article  PubMed  Google Scholar 

  8. Greil GF, Wolf I, Kuettner A, Fenchel M, Miller S, Martirosian P et al (2007) Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol 96:176–185

    Article  CAS  PubMed  Google Scholar 

  9. Valverde I, Gomez G, Gonzalez A, Suarez-Mejias C, Adsuar A, Coserria JF, Uribe S, Gomez-Cia T, Hosseinpour AR (2015) Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure. Cardiol Young 25:698–704

    Article  PubMed  Google Scholar 

  10. Mottl-Link S, Hübler M, Kühne T, Rietdorf U, Krueger JJ, Schnackenburg B et al (2008) Physical Models aiding in complex congenital heart surgery. Ann Thorac Surg 86:273–277

    Article  PubMed  Google Scholar 

  11. Vranicar M, Gregory W, Douglas WI, Di Sessa P, Di Sessa TG (2008) The use of stereolithographic hand held models for evaluation of congenital anomalies of the great arteries. Stud Health Technol Inform 132:538–543

    PubMed  Google Scholar 

  12. Sodian R, Weber S, Markert M, Loeff M, Lueth T, Weis FC et al (2008) Pediatric cardiac transplantation: three dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J Thorac Cardiovasc Surg 136:1098–1099

    Article  PubMed  Google Scholar 

  13. Shiraishi I, Yamagishi M, Hamaoka K, Fukuzawa M, Yagihara T (2010) Simulative operation on congenital heart disease using rubber like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur J Cardiothorac Surg 37:302–306

    PubMed  Google Scholar 

  14. Schmauss D, Haeberle S, Hagl C, Sodian R (2015) Three-dimensional printing in cardiac surgery and interventional cardiology: a single centre experience. Eur J Cardiothorac Surg 47:1044–1052

    Article  PubMed  Google Scholar 

  15. Ryan JR, Moe TG, Richardson R, Frakes DH, Nigro JJ, Pophal SA (2015) novel approach to neonatal management of tetralogy of Fallot with pulmonary atresia and multiple aortopulmonary collaterals. JACC Cardiovasc Imag 8:103–104

    Article  Google Scholar 

  16. Olivieri L, Krieger A, Chen MY, Kim P, Kanter JP (2014) 3D heart model guides complex stent angioplasty of pulmonary venous baffle obstruction in a Mustard repair of D-TGA. Int J Cardiol 172:e297–e298

    Article  PubMed  Google Scholar 

  17. Schmauss D, Schmitz C, Bigdeli AK, Weber S, Gerber N, Beiras-Fernandez A et al (2012) Three dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann Thorac Surg 93:e31–e33

    Article  PubMed  Google Scholar 

  18. Valverde I, Gomez G, Coserria JF, Suarez-Mejias C, Uribe S, Sotelo J, Velasco MN, Santos De Soto J, Hosseinpour AR, Gomez-Cia T (2015) 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter Cardiovasc Interv 85:1006–1012

    Article  PubMed  Google Scholar 

  19. Kim Ms, Hangsen AR, Carrol JD (2008) Use of rapid prototyping in the care of patients with structural heart disease. Trends Cardiovasc Med 18:210–216

    Article  PubMed  Google Scholar 

  20. Maragiannis D, Jackson MS, Igo SR, Chang SM, Zoghbi WA, Little SH (2014) Functional 3D printed patient specific modeling of severe aortic stenosis. J Am Coll Cardiol 64:1066–1068

    Article  PubMed  Google Scholar 

  21. Suárez-Mejías C, Gomez-Ciriza G, Valverde I, Parra Calderón C, Gómez-Cía T (2015) New technologies applied to surgical processes: virtual reality and rapid prototyping. Stud Health Technol Inform 210:669–671

    PubMed  Google Scholar 

  22. Byrne N, Velasco Forte M, Tandon A, Valverde I, Hussain TA (2016) Systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovasc Dis 5:2048004016645467

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tandon A, Byrne N, Nieves Velasco Forte Mde L, Zhang S, Dyer AK, Dillenbeck JM, Greil GF, Hussain T (2016) Use of a semi-automated cardiac segmentation tool improves reproducibility and speed of segmentation of contaminated right heart magnetic resonance angiography. Int J Cardiovasc Imag 32:1273–1279

    Article  Google Scholar 

  24. Ebert J, Ozkol E, Zeichner A, Uibel K, Weiss O, Koops U et al (2009) Direct inkjet printing of dental prostheses made of zirconia. J Dent Res 88:673–676

    Article  CAS  PubMed  Google Scholar 

  25. Tognola G, Parazzini M, Svelto C, Galli M, Ravazzani P, Grandori F (2004) Design of hearing aid shells by three dimensional laser scanning and mesh reconstruction. J Biomed Opt 9:835–843

    Article  PubMed  Google Scholar 

  26. Cantinotti M, Giordano R, Scalese M, Molinaro S, Della Pina F, Storti S et al (2015) Prognostic role of BNP in children undergoing surgery for congenital heart disease: analysis of prediction models incorporating standard risk factors. Clin Chem Lab Med 53(11):1839–1846

    Article  CAS  PubMed  Google Scholar 

  27. Wang TJ (2011) Assessing the role of circulating, genetic, and imaging biomarkers in cardiovascular risk prediction. Circulation 123:551–565

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors appreciate the assistance of R. Gabe Linke, Children's Hospital and Medical Center, Omaha, NE, USA.

Funding

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelby Kutty.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantinotti, M., Valverde, I. & Kutty, S. Three-dimensional printed models in congenital heart disease. Int J Cardiovasc Imaging 33, 137–144 (2017). https://doi.org/10.1007/s10554-016-0981-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-0981-2

Keywords

Navigation