Skip to main content

Advertisement

Log in

Magnetic resonance imaging for characterizing myocardial diseases

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The National Institute of Health defined cardiomyopathy as diseases of the heart muscle. These myocardial diseases have different etiology, structure and treatment. This review highlights the key imaging features of different myocardial diseases. It provides information on myocardial structure/orientation, perfusion, function and viability in diseases related to cardiomyopathy. The standard cardiac magnetic resonance imaging (MRI) sequences can reveal insight on left ventricular (LV) mass, volumes and regional contractile function in all types of cardiomyopathy diseases. Contrast enhanced MRI sequences allow visualization of different infarct patterns and sizes. Enhancement of myocardial inflammation and infarct (location, transmurality and pattern) on contrast enhanced MRI have been used to highlight the key differences in myocardial diseases, predict recovery of function and healing. The common feature in many forms of cardiomyopathy is the presence of diffuse-fibrosis. Currently, imaging sequences generating the most interest in cardiomyopathy include myocardial strain analysis, tissue mapping (T1, T2, T2*) and extracellular volume (ECV) estimation techniques. MRI sequences have the potential to decode the etiology by showing various patterns of infarct and diffuse fibrosis in myocarditis, amyloidosis, sarcoidosis, hypertrophic cardiomyopathy due to aortic stenosis, restrictive cardiomyopathy, arrythmogenic right ventricular dysplasia and hypertension. Integrated PET/MRI system may add in the future more information for the diagnosis and progression of cardiomyopathy diseases. With the promise of high spatial/temporal resolution and 3D coverage, MRI will be an indispensible tool in diagnosis and monitoring the benefits of new therapies designed to treat myocardial diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nicolas WS, Rafat FP, Edmund PC (2013) Pericarditis, myocarditis, and other cardiomyopathies. Prim Care 40:213–236

    Article  Google Scholar 

  2. Earls JP, Ho VB, Foo TK, Castillo E, Flamm SD (2002) Cardiac mri: recent progress and continued challenges. J Magn Resone Imaging 16:111–127

    Article  Google Scholar 

  3. McCrohon JA, Moon JC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJ, Pennell DJ (2003) Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108:54–59

    Article  CAS  PubMed  Google Scholar 

  4. De Cobelli F, Pieroni M, Esposito A, Chimenti C, Belloni E, Mellone R, Canu T, Perseghin G, Gaudio C, Maseri A, Frustaci A, Del Maschio A (2006) Delayed gadolinium-enhanced cardiac magnetic resonance in patients with chronic myocarditis presenting with heart failure or recurrent arrhythmias. J Am Coll Cardiol 47:1649–1654

    Article  PubMed  Google Scholar 

  5. Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, Sheppard MN, Poole-Wilson PA, Pennell DJ (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48:1977–1985

    Article  PubMed  Google Scholar 

  6. Saremi F, Grizzard JD, Kim RJ (2008) Optimizing cardiac mr imaging: practical remedies for artifacts. Radiographics 28:1161–1187

    Article  PubMed  Google Scholar 

  7. Markl M, Pelc NJ (2004) On flow effects in balanced steady-state free precession imaging: pictorial description, parameter dependence, and clinical implications. J Magn Reson Imaging 20:697–705

    Article  PubMed  Google Scholar 

  8. Schar M, Kozerke S, Fischer SE, Boesiger P (2004) Cardiac ssfp imaging at 3 T. Magn Reson Med 51:799–806

    Article  PubMed  Google Scholar 

  9. Chavhan GB, Babyn PS, Jankharia BG, Cheng HL, Shroff MM (2008) Steady-state mr imaging sequences: physics, classification, and clinical applications. Radiographics 28:1147–1160

    Article  PubMed  Google Scholar 

  10. Deux JF, Maatouk M, Lim P, Vignaud A, Mayer J, Gueret P, Rahmouni A (2011) Acute myocarditis: diagnostic value of contrast-enhanced cine steady-state free precession mri sequences. Am J Roentgenol 197:1081–1087

    Article  Google Scholar 

  11. Giri S, Chung YC, Merchant A, Mihai G, Rajagopalan S, Raman SV (2009) T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 11:56. doi:10.1186/1532-429X-11-56

    Article  PubMed  PubMed Central  Google Scholar 

  12. Abdel-Aty H, Boye P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D (2005) Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 45:1815–1822

    Article  Google Scholar 

  13. Abdel-Aty H, Cocker M, Friedrich MG (2009) Myocardial edema is a feature of tako-tsubo cardiomyopathy and is related to the severity of systolic dysfunction: insights from t2-weighted cardiovascular magnetic resonance. Int J Cardiol 132:291–293

    Article  PubMed  Google Scholar 

  14. Sosnovik DE, Wang R, Dai G, Reese TG, Wedeen VJ (2009) Diffusion mr tractography of the heart. J Cardiovasc Magn Reson 11:47

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hales PW, Schneider JE, Burton RA, Wright BJ, Bollensdorff C, Kohl P (2012) Histo-anatomical structure of the living isolated rat heart in two contraction states assessed by diffusion tensor MRI. Prog Biophys Mol Biol 110:319–330

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cao F, Lin S, Xie X, Ray P, Patel M, Zhang X, Drukker M, Dylla SJ, Connolly AJ, Chen X, Weissman IL, Gambhir SS, Wu JC (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113:1005–1014

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mekkaoui C, Huang S, Chen HH, Dai G, Reese TG, Kostis WJ, Thiagalingam A, Maurovich-Horvat P, Ruskin JN, Hoffmann U, Jackowski MP, Sosnovik DE (2012) Fiber architecture in remodeled myocardium revealed with a quantitative diffusion cmr tractography framework and histological validation. J Cardiovasc Magn Reson 14:70

    Article  PubMed  PubMed Central  Google Scholar 

  18. McGill LA, Ismail TF, Nielles-Vallespin S, Ferreira P, Scott AD, Roughton M, Kilner PJ, Ho SY, McCarthy KP, Gatehouse PD, de Silva R, Speier P, Feiweier T, Mekkaoui C, Sosnovik DE, Prasad SK, Firmin DN, Pennell DJ (2012) Reproducibility of in-vivo diffusion tensor cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 14:86

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ferreira PF, Kilner PJ, McGill LA, Nielles-Vallespin S, Scott AD, Ho SY, McCarthy KP, Haba MM, Ismail TF, Gatehouse PD, de Silva R, Lyon AR, Prasad SK, Firmin DN, Pennell DJ (2014) In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 16:87

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tseng YY, Liang J (2006) Estimation of amino acid residue substitution rates at local spatial regions and application in protein function inference: a bayesian monte carlo approach. Mol Biol Evol 23:421–436

    Article  CAS  PubMed  Google Scholar 

  21. Ismail TF, Hsu LY, Greve AM, Goncalves C, Jabbour A, Gulati A, Hewins B, Mistry N, Wage R, Roughton M, Ferreira PF, Gatehouse P, Firmin D, O’Hanlon R, Pennell DJ, Prasad SK, Arai AE (2014) Coronary microvascular ischemia in hypertrophic cardiomyopathy-a pixel-wise quantitative cardiovascular magnetic resonance perfusion study. J Cardiovasc Magn Reson 16:49

    Article  PubMed  PubMed Central  Google Scholar 

  22. Laissy JP, Gaxotte V, Ironde-Laissy E, Klein I, Ribet A, Bendriss A, Chillon S, Schouman-Claeys E, Steg PG, Serfaty JM (2013) Cardiac diffusion-weighted mr imaging in recent, subacute, and chronic myocardial infarction: a pilot study. J Magn Reson Imaging 38:1377–1387

    Article  PubMed  Google Scholar 

  23. Lund GK, Stork A, Saeed M, Bansmann MP, Gerken JH, Muller V, Mester J, Higgins CB, Adam G, Meinertz T (2004) Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement mr imaging compared with 201tl spect imaging. Radiology 232:49–57

    Article  PubMed  Google Scholar 

  24. Wu E, Ortiz JT, Tejedor P, Lee DC, Bucciarelli-Ducci C, Kansal P, Carr JC, Holly TA, Lloyd-Jones D, Klocke FJ, Bonow RO (2008) Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart 94:730–736

    Article  CAS  PubMed  Google Scholar 

  25. Roes SD, Kelle S, Kaandorp TA, Kokocinski T, Poldermans D, Lamb HJ, Boersma E, van der Wall EE, Fleck E, de Roos A, Nagel E, Bax JJ (2007) Comparison of myocardial infarct size assessed with contrast-enhanced magnetic resonance imaging and left ventricular function and volumes to predict mortality in patients with healed myocardial infarction. Am J Cardiol 100:930–936

    Article  PubMed  Google Scholar 

  26. Masci PG, Ganame J, Strata E, Desmet W, Aquaro GD, Dymarkowski S (2010) Myocardial salvage by cmr correlates with lv remodeling and early st-segment resolution in acute myocardial infarction. JACC Cardiovasc Imaging 3(1):45–51. doi:10.1016/j.jcmg.2009.06.016

    Article  PubMed  Google Scholar 

  27. Wu KC (2012) Cmr of microvascular obstruction and hemorrhage in myocardial infarction. J Cardiovasc Magn Reson 14:68

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bajwa HZ, Do L, Suhail M, Hetts SW, Wilson MW, Saeed M (2014) Mri demonstrates a decrease in myocardial infarct healing and increase in compensatory ventricular hypertrophy following mechanical microvascular obstruction. J Magn Reson Imaging 40:906–914

    Article  PubMed  Google Scholar 

  29. Ahmed N, Carrick D, Layland J, Oldroyd KG, Berry C (2013) The role of cardiac magnetic resonance imaging (mri) in acute myocardial infarction (ami). Heart lung circulation 22:243–255

    Article  Google Scholar 

  30. Rubenstein JC, Lee DC, Wu E, Kadish AH, Passman R, Bello D, Goldberger JJ (2013) A comparison of cardiac magnetic resonance imaging peri-infarct border zone quantification strategies for the prediction of ventricular tachyarrhythmia inducibility. Cardiol J 20:68–77

    Article  PubMed  Google Scholar 

  31. Kvernby S, Warntjes MJ, Haraldsson H, Carlhall CJ, Engvall J, Ebbers T (2014) Simultaneous three-dimensional myocardial t1 and t2 mapping in one breath hold with 3d-qalas. J Cardiovasc Magn Reson 16:102

    Article  PubMed  PubMed Central  Google Scholar 

  32. Luetkens JA, Homsi R, Sprinkart AM, Doerner J, Dabir D, Kuetting DL, Block W, Andrié R, Stehning C, Fimmers R, Gieseke J, Thomas DK, Schild HH, Naehle CP (2016) Incremental value of quantitative cmr including parametric mapping for the diagnosis of acute myocarditis. Eur Heart J Cardiovasc Imaging 17:154–161

    Article  PubMed  Google Scholar 

  33. Puntmann VO, D’Cruz D, Smith Z, Pastor A, Choong P, Voigt T, Carr-White G, Sangle S, Schaeffter T, Nagel E (2013) Native myocardial t1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus. Circ Cardiovasc Imaging 6:295–301

    Article  PubMed  Google Scholar 

  34. Mordi I, Carrick D, Bezerra H, Tzemos N (2015) T1 and t2 mapping for early diagnosis of dilated non-ischaemic cardiomyopathy in middle-aged patients and differentiation from normal physiological adaptation. Eur Heart J Cardiovasc Imaging 17:797–803

    Article  PubMed  Google Scholar 

  35. Hinojar R, Varma N, Child N, Goodman B, Jabbour A, Yu CY, Gebker R, Doltra A, Kelle S, Khan S, Rogers T, Arroyo Ucar E, Cummins C, Carr-White G, Nagel E, Puntmann VO (2015) T1 mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy: findings from the international t1 multicenter cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 8(12):e003285. doi:10.1161/CIRCIMAGING.115.003285

    Article  PubMed  Google Scholar 

  36. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB (2013) Myocardial t1 mapping and extracellular volume quantification: a society for cardiovascular magnetic resonance (scmr) and cmr working group of the european society of cardiology consensus statement. J Cardiovasc Magn Reson 15:92

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saeed MHS, Jablonowski R, Wilson MW (2014) Magnetic resonance imaging and multi-detector computed tomography assessment of extracellular compartment in ischemic and non-ischemic myocardial pathologies. World J Cardiol 6:1192–1208

    Article  PubMed  PubMed Central  Google Scholar 

  38. Saeed M, Bajwa HZ, Do L, Hetts SW, Wilson MW (2016) Multi-detector ct and mri of microembolized myocardial infarct: monitoring of left ventricular function, perfusion, and myocardial viability in a swine model. Acta Radiol 57:215–224

    Article  PubMed  Google Scholar 

  39. Saeed M, Hetts SW, Do L, Wilson MW (2013) Coronary microemboli effects in preexisting acute infarcts in a swine model: cardiac mr imaging indices, injury biomarkers, and histopathologic assessment. Radiology 268:98–108

    Article  PubMed  Google Scholar 

  40. Nallamothu BK, Bates ER (2003) Periprocedural myocardial infarction and mortality: causality versus association. J Am Coll Cardiol 42:1412–1414

    Article  PubMed  Google Scholar 

  41. Schwartz RS, Burke A, Farb A, Kaye D, Lesser JR, Henry TD, Virmani R (2009) Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: relation to epicardial plaque histopathology. J Am Coll Cardiol 54:2167–2173

    Article  PubMed  Google Scholar 

  42. Saeed M, Lund G, Wendland MF, Bremerich J, Weinmann H, Higgins CB (2001) Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation 103:871–876

    Article  CAS  PubMed  Google Scholar 

  43. Yan AT, Shayne AJ, Brown KA, Gupta SN, Chan CW, Luu TM, Di Carli MF, Reynolds HG, Stevenson WG, Kwong RY (2006) Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 114:32–39

    Article  PubMed  Google Scholar 

  44. Schmidt A, Azevedo CF, Cheng A, Gupta SN, Bluemke DA, Foo TK, Gerstenblith G, Weiss RG, Marban E, Tomaselli GF, Lima JA, Wu KC (2007) Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 115:2006–2014

    Article  PubMed  PubMed Central  Google Scholar 

  45. O’Regan DP, Ahmed R, Neuwirth C, Tan Y, Durighel G, Hajnal JV, Nadra I, Corbett SJ, Cook SA (2009) Cardiac mri of myocardial salvage at the peri-infarct border zones after primary coronary intervention. Am J Physiol Heart Circ Physiol 297:H340–H346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lund GK, Stork A, Muellerleile K, Barmeyer AA, Bansmann MP, Knefel M, Schlichting U, Muller M, Verde PE, Adam G, Meinertz T, Saeed M (2007) Prediction of left ventricular remodeling and analysis of infarct resorption in patients with reperfused myocardial infarcts by using contrast-enhanced mr imaging. Radiology 245:95–102

    Article  PubMed  Google Scholar 

  47. Pokorney SD, Rodriguez JF, Ortiz JT, Lee DC, Bonow RO, Wu E (2012) Infarct healing is a dynamic process following acute myocardial infarction. J Cardiovasc Magn Reson 14:62

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gupta A, Lee VS, Chung YC, Babb JS, Simonetti OP (2004) Myocardial infarction: optimization of inversion times at delayed contrast-enhanced mr imaging. Radiology 233:921–926

    Article  PubMed  Google Scholar 

  49. Kellman P, Hansen MS (2014) T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson 16:2

    Article  PubMed  PubMed Central  Google Scholar 

  50. Treibel TA, Fontana M, Gilbertson JA, Castelletti S, White SK, Scully PR, Roberts N, Hutt DF, Rowczenio DM, Whelan CJ, Ashworth MA, Gillmore JD, Hawkins PN, Moon JC (2016) Occult transthyretin cardiac amyloid in severe calcific aortic stenosis: prevalence and prognosis in patients undergoing surgical aortic valve replacement. Circ Cardiovasc Imaging 9(8):e005066. doi:10.1161/CIRCIMAGING.116.005066

  51. Yoon JH, Son JW, Chung H, Park CH, Kim YJ, Chang HJ, Hong GR, Kim TH, Ha JW, Choi BW, Rim SJ, Chung N, Choi EY (2015) Relationship between myocardial extracellular space expansion estimated with post-contrast t1 mapping mri and left ventricular remodeling and neurohormonal activation in patients with dilated cardiomyopathy. Korean J Radiol 16:1153–1162

    Article  PubMed  PubMed Central  Google Scholar 

  52. Barison A, Emdin M, Masci PG (2016) Increased extracellular volume fraction in nonischaemic dilated cardiomyopathy predicts worse outcomes independently of medical therapy. J Cardiovasc Med 17:227

    Article  Google Scholar 

  53. Germain P, El Ghannudi S, Jeung MY, Ohlmann P, Epailly E, Roy C, Gangi A (2014) Native t1 mapping of the heart-a pictorial review. Clin Med Insights Cardiol 8:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pennell D (2006) Myocardial salvage: retrospection, resolution, and radio waves. Circulation 113:1821–1823

    Article  PubMed  Google Scholar 

  55. Abdel-Aty H, Simonetti O, Friedrich MG (2007) T2-weighted cardiovascular magnetic resonance imaging. J Magn Reson Imaging 26:452–459

    Article  PubMed  Google Scholar 

  56. Aletras AH, Tilak GS, Natanzon A, Hsu LY, Gonzalez FM, Hoyt RF Jr, Arai AE (2006) Retrospective determination of the area at risk for reperfused acute myocardial infarction with t2-weighted cardiac magnetic resonance imaging: Histopathological and displacement encoding with stimulated echoes (dense) functional validations. Circulation 113:1865–1870

    Article  PubMed  Google Scholar 

  57. Desch S, Eitel I, de Waha S, Fuernau G, Lurz P, Gutberlet M, Schuler G, Thiele H (2011) Cardiac magnetic resonance imaging parameters as surrogate endpoints in clinical trials of acute myocardial infarction. Trials 12:204

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ibanez B, Macaya C, Sanchez-Brunete V, Pizarro G, Fernandez-Friera L, Mateos A, Fernandez-Ortiz A, Garcia-Ruiz JM, Garcia-Alvarez A, Iniguez A, Jimenez-Borreguero J, Lopez-Romero P, Fernandez-Jimenez R, Goicolea J, Ruiz-Mateos B, Bastante T, Arias M, Iglesias-Vazquez JA, Rodriguez MD, Escalera N, Acebal C, Cabrera JA, Valenciano J, Perez de Prado A, Fernandez-Campos MJ, Casado I, Garcia-Rubira JC, Garcia-Prieto J, Sanz-Rosa D, Cuellas C, Hernandez-Antolin R, Albarran A, Fernandez-Vazquez F, de la Torre-Hernandez JM, Pocock S, Sanz G, Fuster V (2013) Effect of early metoprolol on infarct size in st-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the effect of metoprolol in cardioprotection during an acute myocardial infarction (metocard-cnic) trial. Circulation 128:1495–1503

    Article  CAS  PubMed  Google Scholar 

  59. Eitel I, Friedrich MG (2011) T2-weighted cardiovascular magnetic resonance in acute cardiac disease. J Cardiovasc Magn Reson 13:1–11

    Article  Google Scholar 

  60. Fernandez-Jimenez R, Sanchez-Gonzalez J, Aguero J, Garcia-Prieto J, Lopez-Martin GJ, Garcia-Ruiz JM, Molina-Iracheta A, Rossello X, Fernandez-Friera L, Pizarro G, Garcia-Alvarez A, Dall’Armellina E, Macaya C, Choudhury RP, Fuster V, Ibanez B (2015) Myocardial edema after ischemia/reperfusion is not stable and follows a bimodal pattern: imaging and histological tissue characterization. J Am Coll Cardiol 65:315–323

    Article  PubMed  Google Scholar 

  61. Wood JC (2011) Impact of iron assessment by mri. Hematol Am Soc Hematol Educ Progr 2011:443–450

    Google Scholar 

  62. Ouederni M, Ben Khaled M, Mellouli F, Ben Fraj E, Dhouib N, Yakoub IB, Abbes S, Mnif N, Bejaoui M (2017) Myocardial and liver iron overload, assessed using t2* magnetic resonance imaging with an excel spreadsheet for post processing in tunisian thalassemia major patients. Ann Hematol 96:133–139

    Article  CAS  PubMed  Google Scholar 

  63. Carpenter JP, Pennell DJ (2009) Role of t2* magnetic resonance in monitoring iron chelation therapy. Acta Haematol 122:146–154

    Article  CAS  PubMed  Google Scholar 

  64. Raman SV, Winner MW III, Tran T, Velayutham M, Simonetti OP, Baker PB, Olesik J, McCarthy B, Ferketich AK, Zweier JL (2008) In vivo atherosclerotic plaque characterization using magnetic susceptibility distinguishes symptom-producing plaques. JACC Cardiovasc Imaging 1(1):49–57. doi:10.1016/j.jcmg.2007.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tanner MA, Porter JB, Westwood MA et al (2005) Myocardial t2* in patients with cardiac failure secondary to iron overload. Blood 107(9):3738–3744

  66. Abdel-Gadir A, Sado D, Murch S, Maestrini V, Rosmini S, Treibel TA, Fontana M, Bulluck H, Piechnik SK, Manisty C, Herrey AS, Walker JM, Porter J, Moon J (2015) Myocardial iron quantification using t2* and native t1mapping-a 250 patient study. J Cardiovasc Magn Reson 17:1–2

    Article  Google Scholar 

  67. Pennell DJ (2008) T2* magnetic resonance: Iron and gold. JACC Cardiovasc Imaging 1:579–581

    Article  PubMed  Google Scholar 

  68. Coelho-Filho OR, Rickers C, Kwong RY, Jerosch-Herold M (2013) Mr myocardial perfusion imaging. Radiology 266:701–715

    Article  PubMed  Google Scholar 

  69. Moffat BA, Chenevert TL, Hall DE, Rehemtulla A, Ross BD (2005) Continuous arterial spin labeling using a train of adiabatic inversion pulses. J Magn Reson Imaging 21:290–296

    Article  PubMed  Google Scholar 

  70. Theberge J (2008) Perfusion magnetic resonance imaging in psychiatry. Top Magn Reson Imaging 19:111–130

    Article  PubMed  Google Scholar 

  71. Arnold JR, Karamitsos TD, Bhamra-Ariza P, Francis JM, Searle N, Robson MD, Howells RK, Choudhury RP, Rimoldi OE, Camici PG, Banning AP, Neubauer S, Jerosch-Herold M, Selvanayagam JB (2012) Myocardial oxygenation in coronary artery disease: insights from blood oxygen level-dependent magnetic resonance imaging at 3 T. J Am Coll Cardiol 59:1954–1964

    Article  PubMed  Google Scholar 

  72. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, Bijsterveld P, Ridgway JP, Radjenovic A, Dickinson CJ, Ball SG, Plein S (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (ce-marc): a prospective trial. Lancet 379:453–460

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sipola P, Lauerma K, Husso-Saastamoinen M, Kuikka JT, Vanninen E, Laitinen T, Manninen H, Niemi P, Peuhkurinen K, Jaaskelainen P, Laakso M, Kuusisto J, Aronen HJ (2003) First-pass mr imaging in the assessment of perfusion impairment in patients with hypertrophic cardiomyopathy and the asp175asn mutation of the alpha-tropomyosin gene. Radiology 226:129–137

    Article  PubMed  Google Scholar 

  74. Kuribayashi T, Roberts WC (1992) Myocardial disarray at junction of ventricular septum and left and right ventricular free walls in hypertrophic cardiomyopathy. Am J Cardiol 70:1333–1340

    Article  CAS  PubMed  Google Scholar 

  75. Jahnke C, Nagel E, Gebker R, Kokocinski T, Kelle S, Manka R, Fleck E, Paetsch I (2007) Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation 115:1769–1776

    Article  PubMed  Google Scholar 

  76. Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445

    Article  PubMed  PubMed Central  Google Scholar 

  77. Alam SR, Shah ASV, Richards J, Lang NN, Barnes G, Joshi N, MacGillivray T, McKillop G, Mirsadraee S, Payne J, Fox KAA, Henriksen P, Newby DE, Semple SIK (2012) Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience. Circulation 5:559–565

    PubMed  Google Scholar 

  78. Yilmaz A, Dengler MA, van der Kuip H, Yildiz H, Rösch S, Klumpp S, Klingel K, Kandolf R, Helluy X, Hiller K-H, Jakob PM, Sechtem U (2013) Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur Heart J 34:462–475

    Article  CAS  PubMed  Google Scholar 

  79. Rischpler C, Nekolla SG, Dregely I, Schwaiger M (2013) Hybrid pet/mr imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med 54:402–415

    Article  CAS  PubMed  Google Scholar 

  80. Rischpler C, Dirschinger RJ, Nekolla SG, Kossmann H, Nicolosi S, Hanus F, van Marwick S, Kunze KP, Meinicke A, Götze K, Kastrati A, Langwieser N, Ibrahim T, Nahrendorf M, Schwaiger M, Laugwitz K-L (2016) Prospective evaluation of 18 f-fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circulation 9:e004316

    PubMed  PubMed Central  Google Scholar 

  81. Carlsson M, Osman NF, Ursell PC, Martin AJ, Saeed M (2008) Quantitative mr measurements of regional and global left ventricular function and strain after intramyocardial transfer of vm202 into infarcted swine myocardium. Am J Physiol Heart Circ Physiol 295:H522–H532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jacquier A, Higgins CB, Martin AJ, Do L, Saloner D, Saeed M (2007) Injection of adeno-associated viral vector encoding vascular endothelial growth factor gene in infarcted swine myocardium: Mr measurements of left ventricular function and strain. Radiology 245:196–205

    Article  PubMed  Google Scholar 

  83. Saeed M, Martin A, Jacquier A, Bucknor M, Saloner D, Do L, Ursell P, Su H, Kan YW, Higgins CB (2008) Permanent coronary artery occlusion: cardiovascular mr imaging is platform for percutaneous transendocardial delivery and assessment of gene therapy in canine model. Radiology 249:560–571

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sommer P, Grothoff M, Eitel C, Gaspar T, Piorkowski C, Gutberlet M, Hindricks G (2013) Feasibility of real-time magnetic resonance imaging-guided electrophysiology studies in humans. Europace 15:101–108

    Article  PubMed  Google Scholar 

  85. Bhagirath P, van der Graaf M, Karim R, Rhode K, Piorkowski C, Razavi R, Schwitter J, Gotte M (2015) Interventional cardiac magnetic resonance imaging in electrophysiology: advances toward clinical translation. Circ Arrhythm Electrophysiol 8:203–211

    Article  PubMed  Google Scholar 

  86. Dick AJ, Guttman MA, Raman VK, Peters DC, Pessanha BS, Hill JM, Smith S, Scott G, McVeigh ER, Lederman RJ (2003) Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation 108:2899–2904

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ebert SN, Taylor DG, Nguyen HL, Kodack DP, Beyers RJ, Xu Y, Yang Z, French BA (2007) Noninvasive tracking of cardiac embryonic stem cells in vivo using magnetic resonance imaging techniques. Stem Cells 25:2936–2944

    Article  PubMed  Google Scholar 

  88. Hill JM, Dick AJ, Raman VK, Thompson RB, Yu ZX, Hinds KA, Pessanha BS, Guttman MA, Varney TR, Martin BJ, Dunbar CE, McVeigh ER, Lederman RJ (2003) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108:1009–1014

    Article  PubMed  PubMed Central  Google Scholar 

  89. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marban L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marban E (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (caduceus): a prospective, randomised phase 1 trial. Lancet 379:895–904

    Article  PubMed  PubMed Central  Google Scholar 

  90. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Anderson KR, Sutton MG, Lie JT (1979) Histopathological types of cardiac fibrosis in myocardial disease. J Pathol 128:79–85

    Article  CAS  PubMed  Google Scholar 

  92. Schelbert EB, Testa SM, Meier CG, Ceyrolles WJ, Levenson JE, Blair AJ, Kellman P, Jones BL, Ludwig DR, Schwartzman D, Shroff SG, Wong TC (2011) Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus. J Cardiovasc Magn Reson 13:16

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jerosch-Herold M, Sheridan DC, Kushner JD, Nauman D, Burgess D, Dutton D, Alharethi R, Li D, Hershberger RE (2008) Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 295:H1234–H1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Klein C, Nekolla SG, Balbach T, Schnackenburg B, Nagel E, Fleck E, Schwaiger M (2004) The influence of myocardial blood flow and volume of distribution on late gd-dtpa kinetics in ischemic heart failure. J Magn Reson Imaging 20:588–593

    Article  PubMed  Google Scholar 

  95. Ugander M, Oki AJ, Hsu LY, Kellman P, Greiser A, Aletras AH, Sibley CT, Chen MY, Bandettini WP, Arai AE (2012) Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 33:1268–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hamdani N, Paulus WJ, van Heerebeek L, Borbely A, Boontje NM, Zuidwijk MJ, Bronzwaer JG, Simonides WS, Niessen HW, Stienen GJ, van der Velden J (2009) Distinct myocardial effects of beta-blocker therapy in heart failure with normal and reduced left ventricular ejection fraction. Eur Heart J 30:1863–1872

    Article  CAS  PubMed  Google Scholar 

  97. Brilla CG (2000) Renin-angiotensin system mediated mechanisms: cardioreparation and cardioprotection. Heart 84(Suppl 1):i18–i19

    Article  PubMed  PubMed Central  Google Scholar 

  98. Assomull RG, Lyne JC, Keenan N, Gulati A, Bunce NH, Davies SW (2007) The role of cardiovascular magnetic resonance in patients presenting with chest pain, raised troponin, and unobstructed coronary arteries. Eur Heart J 28:1242–1249

    Google Scholar 

  99. Baughman KL (2006) Diagnosis of myocarditis: death of dallas criteria. Circulation 113:593–595

    Article  PubMed  Google Scholar 

  100. Zagrosek A, Abdel-Aty H, Boye P, Wassmuth R, Messroghli D, Utz W, Rudolph A, Bohl S, Dietz R, Schulz-Menger J (2009) Cardiac magnetic resonance monitors reversible and irreversible myocardial injury in myocarditis. JACC Cardiovasc Imaging 2:131–138

    Article  PubMed  Google Scholar 

  101. Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S, Meinhardt G, Vogelsberg H, Fritz P, Dippon J, Bock CT, Klingel K, Kandolf R, Sechtem U (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114:1581–1590

    Article  PubMed  Google Scholar 

  102. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ (2005) Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J 26:1461–1474

    Article  PubMed  Google Scholar 

  103. Lurz P, Luecke C, Eitel I, Fohrenbach F, Frank C, Grothoff M, de Waha S, Rommel KP, Lurz JA, Klingel K, Kandolf R, Schuler G, Thiele H, Gutberlet M (2016) Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis: the myoracer-trial. J Am Coll Cardiol 67:1800–1811

    Article  PubMed  Google Scholar 

  104. von Knobelsdorff-Brenkenhoff F, Mueller AK, Prothmann M, Hennig P, Dieringer MA, Schmacht L, Greiser A, Schulz-Menger J (2016) Cardiac fibrosis in aortic stenosis and hypertensive heart disease assessed by magnetic resonance t1 mapping. J Heart Valve Dis 25:527–533

    Google Scholar 

  105. Bengtsson C, Ohman ML, Nived O, Rantapaa Dahlqvist S (2012) Cardiovascular event in systemic lupus erythematosus in northern sweden: incidence and predictors in a 7-year follow-up study. Lupus 21:452–459

    Article  CAS  PubMed  Google Scholar 

  106. Mavrogeni S, Karabela G, Stavropoulos E, Plastiras S, Spiliotis G, Gialafos E, Kolovou G, Sfikakis PP, Kitas GD (2014) Heart failure imaging patterns in systemic lupus erythematosus. Evaluation using cardiovascular magnetic resonance. Int J Cardiol 176:559–561

    Article  PubMed  Google Scholar 

  107. Bernatsky S, Boivin JF, Joseph L, Manzi S, Ginzler E, Gladman DD, Urowitz M, Fortin PR, Petri M, Barr S, Gordon C, Bae SC, Isenberg D, Zoma A, Aranow C, Dooley MA, Nived O, Sturfelt G, Steinsson K, Alarcon G, Senecal JL, Zummer M, Hanly J, Ensworth S, Pope J, Edworthy S, Rahman A, Sibley J, El-Gabalawy H, McCarthy T, St Pierre Y, Clarke A, Ramsey-Goldman R (2006) Mortality in systemic lupus erythematosus. Arthritis Rheum 54:2550–2557

    Article  CAS  PubMed  Google Scholar 

  108. Ballocca F, D’Ascenzo F, Moretti C, Omede P, Cerrato E, Barbero U, Abbate A, Bertero MT, Zoccai GB, Gaita F (2015) Predictors of cardiovascular events in patients with systemic lupus erythematosus (sle): a systematic review and meta-analysis. Eur J Prev Cardiol 22:1435–1441

    Article  PubMed  Google Scholar 

  109. Knockaert DC (2007) Cardiac involvement in systemic inflammatory diseases. Eur Heart J 28:1797–1804

    Article  PubMed  Google Scholar 

  110. Hinojar R, Foote L, Sangle S, Marber M, Mayr M, Carr-White G, D’Cruz D, Nagel E, Puntmann VO (2016) Native t1 and t2 mapping by cmr in lupus myocarditis: disease recognition and response to treatment. Int J Cardiol 222:717–726

    Article  PubMed  Google Scholar 

  111. Ishimori ML, Martin R, Berman DS, Goykhman P, Shaw LJ, Shufelt C, Slomka PJ, Thomson LE, Schapira J, Yang Y, Wallace DJ, Weisman MH, Bairey Merz CN (2011) Myocardial ischemia in the absence of obstructive coronary artery disease in systemic lupus erythematosus. JACC Cardiovasc Imaging 4:27–33

    Article  PubMed  Google Scholar 

  112. Varma N, Hinojar R, D’Cruz D, Arroyo Ucar E, Indermuehle A, Peel S, Greil G, Gaddum N, Chowienczyk P, Nagel E, Botnar RM, Puntmann VO (2014) Coronary vessel wall contrast enhancement imaging as a potential direct marker of coronary involvement: Integration of findings from cad and sle patients. JACC Cardiovasc Imaging 7:762–770

    Article  PubMed  PubMed Central  Google Scholar 

  113. Weber KT, Sun Y, Katwa LC (1996) Wound healing following myocardial infarction. Clin Cardiol 19:447–455

    Article  CAS  PubMed  Google Scholar 

  114. Rudolph A, Abdel-Aty H, Bohl S, Boye P, Zagrosek A, Dietz R, Schulz-Menger J (2009) Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol 53:284–291

    Article  PubMed  Google Scholar 

  115. Gonzalez A, Lopez B, Diez J (2005) New directions in the assessment and treatment of hypertensive heart disease. Curr Opin Nephrol Hypertens 14:428–434

    Article  CAS  PubMed  Google Scholar 

  116. Assayag P, Carre F, Chevalier B, Delcayre C, Mansier P, Swynghedauw B (1997) Compensated cardiac hypertrophy: arrhythmogenicity and the new myocardial phenotype. I. Fibrosis. Cardiovasc Res 34:439–444

    Article  CAS  PubMed  Google Scholar 

  117. Choudhury L, Mahrholdt H, Wagner A, Choi KM, Elliott MD, Klocke FJ, Bonow RO, Judd RM, Kim RJ (2002) Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 40:2156–2164

    Article  PubMed  Google Scholar 

  118. Kim RJ, Judd RM (2003) Gadolinium-enhanced magnetic resonance imaging in hypertrophic cardiomyopathy: in vivo imaging of the pathologic substrate for premature cardiac death? J Am Coll Cardiol 41:1568–1572

    Article  PubMed  Google Scholar 

  119. Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, Lesser JR, Gruner C, Crean AM, Rakowski H, Udelson JE, Rowin E, Lombardi M, Cecchi F, Tomberli B, Spirito P, Formisano F, Biagini E, Rapezzi C, De Cecco CN, Autore C, Cook EF, Hong SN, Gibson CM, Manning WJ, Appelbaum E, Maron MS (2014) Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 130:484–495

    Article  PubMed  Google Scholar 

  120. O’Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, Webb J, Kulkarni M, Dawson D, Sulaibeekh L, Chandrasekaran B, Bucciarelli-Ducci C, Pasquale F, Cowie MR, McKenna WJ, Sheppard MN, Elliott PM, Pennell DJ, Prasad SK (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56:867–874

    Article  PubMed  Google Scholar 

  121. Prinz C, Schwarz M, Ilic I, Laser KT, Lehmann R, Prinz EM, Bitter T, Vogt J, van Buuren F, Bogunovic N, Horstkotte D, Faber L (2013) Myocardial fibrosis severity on cardiac magnetic resonance imaging predicts sustained arrhythmic events in hypertrophic cardiomyopathy. Can J Cardiol 29:358–363

    Article  PubMed  Google Scholar 

  122. Liu S, Han J, Nacif MS, Jones J, Kawel N, Kellman P, Sibley CT, Bluemke DA (2012) Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance t1 mapping: sample size considerations for clinical trials. J Cardiovasc Magn Reson 14:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Brilla CG, Funck RC, Rupp H (2000) Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 102:1388–1393

    Article  CAS  PubMed  Google Scholar 

  124. Tigen K, Karaahmet T, Kirma C, Dundar C, Pala S, Isiklar I, Cevik C, Kilicgedik A, Basaran Y (2010) Diffuse late gadolinium enhancement by cardiovascular magnetic resonance predicts significant intraventricular systolic dyssynchrony in patients with non-ischemic dilated cardiomyopathy. J Am Soc Echocardiogr 23:416–422

    Article  PubMed  Google Scholar 

  125. Ho CY, Lopez B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, Kwong R, Gonzalez A, Colan SD, Seidman JG, Diez J, Seidman CE (2010) Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 363:552–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Arenja N, Riffel JH, Fritz T, Andre F, Aus dem Siepen F, Mueller-Hennessen M, Giannitsis E, Katus HA, Friedrich MG, Buss SJ (2017) Diagnostic and prognostic value of long-axis strain and myocardial contraction fraction using standard cardiovascular mr imaging in patients with nonischemic dilated cardiomyopathies. Radiology 161184. doi:10.1148/radiol.2016161184

  127. Babar JL, Jones RG, Hudsmith L, Steeds R, Guest P (2010) Application of mr imaging in assessment and follow-up of congenital heart disease in adults. Radiographics 30:1145

    Article  PubMed  Google Scholar 

  128. Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I, Sheppard MN, Poole-Wilson PA, Hawkins PN, Pennell DJ (2005) Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111:186–193

    Article  PubMed  Google Scholar 

  129. Carlsson M, Saloner D, Martin AJ, Ursell PC, Saeed M (2010) Heterogeneous microinfarcts caused by coronary microemboli: evaluation with multidetector ct and mr imaging in a swine model. Radiology 254:718–728

    Article  PubMed  PubMed Central  Google Scholar 

  130. Debl K, Djavidani B, Buchner S, Heinicke N, Poschenrieder F, Feuerbach S, Riegger G, Luchner A (2009) Quantification of left-to-right shunting in adult congenital heart disease: phase-contrast cine mri compared with invasive oximetry. Br J Radiol 82:386–391

    Article  CAS  PubMed  Google Scholar 

  131. Markl M, Geiger J, Stiller B, Arnold R (2011) Impaired continuity of flow in congenital heart disease with single ventricle physiology. Interact Cardiovasc Thorac Surg 12:87–90

    Article  PubMed  Google Scholar 

  132. Broberg CS, Chugh SS, Conklin C, Sahn DJ, Jerosch-Herold M (2010) Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circ Cardiovasc Imaging 3:727–734

    Article  PubMed  PubMed Central  Google Scholar 

  133. Neilan TG, Mongeon FP, Shah RV, Coelho-Filho O, Abbasi SA, Dodson JA, McMullan CJ, Heydari B, Michaud GF, John RM, Blankstein R, Jerosch-Herold M, Kwong RY (2014) Myocardial extracellular volume expansion and the risk of recurrent atrial fibrillation after pulmonary vein isolation. JACC Cardiovasc Imaging 7:1–11

    Article  PubMed  Google Scholar 

  134. Murakami T, Ishiguro N, Higuchi K (2014) Transmission of systemic aa amyloidosis in animals. Vet Pathol 51:363–371

    Article  CAS  PubMed  Google Scholar 

  135. Sparrow PJ, Merchant N, Provost YL, Doyle DJ, Nguyen ET, Paul NS (2009) Ct and mr imaging findings in patients with acquired heart disease at risk for sudden cardiac death. Radiographics 29:805–823

    Article  PubMed  Google Scholar 

  136. Austin BA, Tang WH, Rodriguez ER, Tan C, Flamm SD, Taylor DO, Starling RC, Desai MY (2009) Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging 2:1369–1377

    Article  PubMed  Google Scholar 

  137. Hosch W, Bock M, Libicher M, Ley S, Hegenbart U, Dengler TJ, Katus HA, Kauczor HU, Kauffmann GW, Kristen AV (2007) Mr-relaxometry of myocardial tissue: significant elevation of t1 and t2 relaxation times in cardiac amyloidosis. Investig Radiol 42:636–642

    Article  Google Scholar 

  138. Robbers LF, Baars EN, Brouwer WP, Beek AM, Hofman MB, Niessen HW, van Rossum AC, Marcu CB (2012) T1 mapping shows increased extracellular matrix size in the myocardium due to amyloid depositions. Circ Cardiovasc Imaging 5:423–426

    Article  PubMed  Google Scholar 

  139. Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V, Quarta G, Lachmann RH, Murphy E, Mehta A, Hughes DA, McKenna WJ, Taylor AM, Hausenloy DJ, Hawkins PN, Elliott PM, Moon JC (2012) Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 98:1436–1441

    Article  PubMed  Google Scholar 

  140. Paneni F, Beckman JA, Creager MA, Cosentino F (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part i. Eur Heart J 34:2436–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. From AM, Scott CG, Chen HH (2010) The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol 55:300–305

    Article  PubMed  Google Scholar 

  142. Schwartzkopff B, Brehm M, Mundhenke M, Strauer BE (2000) Repair of coronary arterioles after treatment with perindopril in hypertensive heart disease. Hypertension 36:220–225

    Article  CAS  PubMed  Google Scholar 

  143. Tamarappoo BK, John BT, Reinier K, Teodorescu C, Uy-Evanado A, Gunson K, Jui J, Chugh SS (2012) Vulnerable myocardial interstitium in patients with isolated left ventricular hypertrophy and sudden cardiac death: a postmortem histological evaluation. J Am Heart Assoc 1:e001511

    Article  PubMed  PubMed Central  Google Scholar 

  144. Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, Aneizi AA, Shakesprere J, Kellman P, Shroff SG, Schwartzman DS, Mulukutla SR, Simon MA, Schelbert EB (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126:1206–1216

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ng AC, Auger D, Delgado V, van Elderen SG, Bertini M, Siebelink HM, van der Geest RJ, Bonetti C, van der Velde ET, de Roos A, Smit JW, Leung DY, Bax JJ, Lamb HJ (2012) Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced t(1) mapping and subclinical myocardial dysfunction in diabetic patients: a pilot study. Circ Cardiovasc Imaging 5:51–59

    Article  PubMed  Google Scholar 

  146. Rijzewijk LJ, van der Meer RW, Lamb HJ, de Jong HW, Lubberink M, Romijn JA, Bax JJ, de Roos A, Twisk JW, Heine RJ, Lammertsma AA, Smit JW, Diamant M (2009) Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging. J Am Coll Cardiol 54:1524–1532

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maythem Saeed.

Ethics declarations

Conflict of interest

All authors expressed that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards, while animal care and use was performed in concordance with the Guide for the Care and Use of Laboratory Animals, and approval was obtained from the institutional committee on animal research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, M., Liu, H., Liang, CH. et al. Magnetic resonance imaging for characterizing myocardial diseases. Int J Cardiovasc Imaging 33, 1395–1414 (2017). https://doi.org/10.1007/s10554-017-1127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-017-1127-x

Keywords

Navigation