Skip to main content

Advertisement

Log in

Targeting the dominant mechanism of coronary microvascular dysfunction with intracoronary physiology tests

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The coronary microcirculation plays a key role in modulating blood supply to the myocardium. Several factors like myocardial oxygen demands, endothelial and neurogenic conditions determine its function. Although there is available evidence supporting microvascular dysfunction as an important cause of myocardial ischaemia, with both prognostic and symptomatic implications, its diagnosis and management in clinical practice is still relegated to a second plane. Both diagnostic and therapeutic approaches are hampered by the broadness of the concept of microvascular dysfunction, which fails addressing the plurality of mechanisms leading to dysfunction. Normal microcirculatory function requires both structural integrity of the microcirculatory vascular network and preserved signalling pathways ensuring adequate and brisk arteriolar resistance shifts in response to myocardial oxygen demands. Pathological mechanisms affecting these requirements include structural remodelling of microvessels, intraluminal plugging, extravascular compression or vasomotor dysregulation. Importantly, not every diagnostic technique provides evidence on which of these pathophysiological mechanisms is present or predominates in the microcirculation. In this paper we discuss the mechanisms of coronary microvascular dysfunction and the intracoronary tools currently available to detect it, as well as the potential role of each one to unmask the main underlying mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

With permission from Elsevier [15]

Fig. 2
Fig. 3
Fig. 4

a lower CFR has been associated with plugging of coronary microcirculation even after successful reperfusion in STEMI patients [86]

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

With permission of Springer [33]

Similar content being viewed by others

Abbreviations

Ach:

Acetylcholine

ACS:

Acute coronary syndrome

AMI:

Acute myocardial infarction

CAD:

Coronary artery disease

CBF:

Coronary blood flow

CFR:

Coronary flow reserve

CMR:

Cardiac magnetic resonance

CMVD:

Coronary microvascular dysfunction

cWIA:

Coronary wave intensity analysis

FFR:

Fractional flow reserve

HMR:

Hyperemic microvascular resistance

IHD:

Ischaemic heart disease

IHDVPS:

Instantaneous hyperemic diastolic velocity pressure slope

IMR:

Index of microcirculatory resistance

LVF:

Left ventricular function

MVO:

Microvascular obstruction

MVI:

Microvascular injury

NSTEMI:

Non-ST-elevated myocardial infarction

PCI:

Percutaneous coronary intervention

PET:

Positron emission tomography

Pzf:

Zero flow pressure

STEMI:

ST-elevated myocardial infarction

TMN :

Mean transit time

References

  1. Lee JM, Jung J-H, Hwang D, Park J, Fan Y, Na S-H et al (2016) Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. J Am Coll Cardiol 67(10):1158–1169

    Article  PubMed  Google Scholar 

  2. van de Hoef TP, van Lavieren MA, Damman P, Delewi R, Piek MA, Chamuleau SAJ et al (2014) Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ Cardiovasc Interv 7(3):301–311

    Article  PubMed  Google Scholar 

  3. Gaglia MA, Torguson R, Lipinski MJ, Gai J, Koifman E, Kiramijyan S et al (2016) Frequency of angina pectoris after percutaneous coronary intervention and the effect of metallic stent type. Am J Cardiol 117(4):526–531

    Article  PubMed  Google Scholar 

  4. Li Y, Yang D, Lu L, Wu D, Yao J, Hu X et al (2015) Thermodilutional confirmation of coronary microvascular dysfunction in patients with recurrent angina after successful percutaneous coronary intervention. Can J Cardiol 31(8):989–997

    Article  PubMed  Google Scholar 

  5. Herrmann J, Kaski JC, Lerman A (2012) Coronary microvascular dysfunction in the clinical setting: from mystery to reality. Eur Heart J 33(22):2771–2782b

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ et al (2015) Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J 36(45):3134–3146

    Article  PubMed  Google Scholar 

  7. Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, van’ t Veer M et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224

    Article  CAS  PubMed  Google Scholar 

  8. Pijls NHJ, Fearon WF, Tonino PAL, Siebert U, Ikeno F, Bornschein B et al (2010) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol 56(3):177–184

    Article  PubMed  Google Scholar 

  9. Pijls NHJ, van Schaardenburgh P, Manoharan G, Boersma E, Bech J-W, van’t Veer M et al (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 49(21):2105–2111

    Article  PubMed  Google Scholar 

  10. Davies JE, Sen S, Dehbi H-M, Al-Lamee R, Petraco R, Nijjer SS et al (2017) Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med. 376(19):1824–1834. doi:10.1056/NEJMoa1700445

    Article  PubMed  Google Scholar 

  11. Götberg M, Christiansen EH, Gudmundsdottir IJ, Sandhall L, Danielewicz M, Jakobsen L et al (2017) Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med. 376(19):1813–1823. doi:10.1056/NEJMoa1616540

    Article  PubMed  Google Scholar 

  12. Escaned J, Echavarría-Pinto M (2014) Moving beyond coronary stenosis: has the time arrived to address important physiological questions not answered by fractional flow reserve alone? Circ Cardiovasc Interv 7(3):282–284

    Article  PubMed  Google Scholar 

  13. Echavarria-Pinto M, Escaned J, Macías E, Medina M, Gonzalo N, Petraco R et al (2013) Disturbed coronary hemodynamics in vessels with intermediate stenoses evaluated with fractional flow reserve: a combined analysis of epicardial and microcirculatory involvement in ischemic heart disease. Circulation 128(24):2557–2566

    Article  PubMed  Google Scholar 

  14. Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J et al (2014) Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 129(24):2518–2527

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bassingthwaighte JB, Yipintsoi T, Harvey RB (1974) Microvasculature of the dog left ventricular myocardium. Microvasc Res 7(2): 229–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Komaru T, Kanatsuka H, Shirato K (2000) Coronary microcirculation: physiology and pharmacology. Pharmacol Ther 86(3):217–261

    Article  CAS  PubMed  Google Scholar 

  17. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA (2001) Microcirculation in hypertension: a new target for treatment? Circulation 104(6):735–740

    Article  CAS  PubMed  Google Scholar 

  18. Maron BJ, Wolfson JK, Epstein SE, Roberts WC (1986) Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol 8(3):545–557

    Article  CAS  PubMed  Google Scholar 

  19. Mulvany MJ (2012) Small artery remodelling in hypertension. Basic Clin Pharmacol Toxicol 110(1):49–55

    Article  CAS  PubMed  Google Scholar 

  20. Neglia D, Fommei E, Varela-Carver A, Mancini M, Ghione S, Lombardi M et al (2011) Perindopril and indapamide reverse coronary microvascular remodelling and improve flow in arterial hypertension. J Hypertens 29(2):364–372

    Article  CAS  PubMed  Google Scholar 

  21. Crea F, Camici PG, Bairey Merz CN (2014) Coronary microvascular dysfunction: an update. Eur Heart J 35(17):1101–1111

    Article  PubMed  Google Scholar 

  22. Escaned J, Flores A, García-Pavía P, Segovia J, Jimenez J, Aragoncillo P et al (2009) Assessment of microcirculatory remodeling with intracoronary flow velocity and pressure measurements: validation with endomyocardial sampling in cardiac allografts. Circulation 120(16):1561–1568

    Article  CAS  PubMed  Google Scholar 

  23. Sorop O, Merkus D, de Beer VJ, Houweling B, Pistea A, McFalls EO et al (2008) Functional and structural adaptations of coronary microvessels distal to a chronic coronary artery stenosis. Circ Res 102(7):795–803

    Article  CAS  PubMed  Google Scholar 

  24. Camici PG, Olivotto I, Rimoldi OE (2012) The coronary circulation and blood flow in left ventricular hypertrophy. J Mol Cell Cardiol 52(4):857–864

    Article  CAS  PubMed  Google Scholar 

  25. Schwartzkopff B, Frenzel H, Dieckerhoff J, Betz P, Flasshove M, Schulte HD et al (1992) Morphometric investigation of human myocardium in arterial hypertension and valvular aortic stenosis. Eur Heart J 13 Suppl D:17–23

    Article  CAS  PubMed  Google Scholar 

  26. Elliott PM, Kindler H, Shah JS, Sachdev B, Rimoldi OE, Thaman R et al (2006) Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A. Heart Br Card Soc 92(3):357–360

    Article  CAS  Google Scholar 

  27. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S et al (2001) Safety and efficacy of recombinant human alpha-galactosidase A—replacement therapy in Fabry’s disease. N Engl J Med 345(1):9–16

    Article  CAS  PubMed  Google Scholar 

  28. Tsagalou EP, Anastasiou-Nana M, Agapitos E, Gika A, Drakos SG, Terrovitis JV et al (2008) Depressed coronary flow reserve is associated with decreased myocardial capillary density in patients with heart failure due to idiopathic dilated cardiomyopathy. J Am Coll Cardiol 52(17):1391–1398

    Article  PubMed  Google Scholar 

  29. Antonios TF, Kaski JC, Hasan KM, Brown SJ, Singer DR (2001) Rarefaction of skin capillaries in patients with anginal chest pain and normal coronary arteriograms. Eur Heart J 22(13):1144–1148

    Article  CAS  PubMed  Google Scholar 

  30. Hinkel R, Hoewe A, Renner S, Ng J, Lee S, Klett K et al (2017) Diabetes mellitus-induced microvascular destabilization in the myocardium. J Am Coll Cardiol 69(2):131–143

    Article  CAS  PubMed  Google Scholar 

  31. Félétou M, Köhler R, Vanhoutte PM (2012) Nitric oxide: orchestrator of endothelium-dependent responses. Ann Med 44(7):694–716

    Article  PubMed  CAS  Google Scholar 

  32. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88(3):1009–1086

    Article  CAS  PubMed  Google Scholar 

  33. Ong P, Athanasiadis A, Mahrholdt H, Borgulya G, Sechtem U, Kaski JC (2012) Increased coronary vasoconstrictor response to acetylcholine in women with chest pain and normal coronary arteriograms (cardiac syndrome X). Clin Res Cardiol 101(8):673–681

    Article  CAS  PubMed  Google Scholar 

  34. Matsuda K, Teragawa H, Fukuda Y, Ueda K, Higashi Y, Sakai K et al (2003) Response of the left anterior descending coronary artery to acetylcholine in patients with chest pain and angiographically normal coronary arteries. Am J Cardiol 92(12):1394–1398

    Article  CAS  PubMed  Google Scholar 

  35. Marzilli M, Sambuceti G, Fedele S, L’Abbate A (2000) Coronary microcirculatory vasoconstriction during ischemia in patients with unstable angina. J Am Coll Cardiol 35(2):327–334

    Article  CAS  PubMed  Google Scholar 

  36. Ong P, Athanasiadis A, Borgulya G, Vokshi I, Bastiaenen R, Kubik S et al (2014) Clinical usefulness, angiographic characteristics, and safety evaluation of intracoronary acetylcholine provocation testing among 921 consecutive white patients with unobstructed coronary arteries. Circulation 129(17):1723–1730

    Article  CAS  PubMed  Google Scholar 

  37. Camici PG, d’Amati G, Rimoldi O (2015) Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol 12(1):48–62

    Article  PubMed  Google Scholar 

  38. Chilian WM, Kuo L, DeFily DV, Jones CJ, Davis MJ (1993) Endothelial regulation of coronary microvascular tone under physiological and pathophysiological conditions. Eur Heart J 14 Suppl I:55–59

    CAS  PubMed  Google Scholar 

  39. Choudhury L, Rosen SD, Patel D, Nihoyannopoulos P, Camici PG (1997) Coronary vasodilator reserve in primary and secondary left ventricular hypertrophy. A study with positron emission tomography. Eur Heart J 18(1):108–116

    Article  CAS  PubMed  Google Scholar 

  40. Betgem RP, de Waard GA, Nijveldt R, Beek AM, Escaned J, van Royen N (2015) Intramyocardial haemorrhage after acute myocardial infarction. Nat Rev Cardiol 12(3):156–167

    Article  PubMed  Google Scholar 

  41. Teunissen PFA, de Waard GA, Hollander MR, Robbers LFHJ, Danad I, Biesbroek PS et al (2015) Doppler-derived intracoronary physiology indices predict the occurrence of microvascular injury and microvascular perfusion deficits after angiographically successful primary percutaneous coronary intervention. Circ Cardiovasc Interv 8(3):e001786

    Article  PubMed  Google Scholar 

  42. Patel N, Petraco R, Dall’Armellina E, Kassimis G, De Maria GL, Dawkins S et al (2015) Zero-flow pressure measured immediately after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction provides the best invasive index for predicting the extent of myocardial infarction at 6 months: an OxAMI study (Oxford Acute Myocardial Infarction). JACC Cardiovasc Interv 8(11):1410–1421

    Article  PubMed  Google Scholar 

  43. Hollander MR, de Waard GA, Konijnenberg LSF, Meijer-van Putten RME, van den Brom CE, Paauw N et al (2016) Dissecting the effects of ischemia and reperfusion on the coronary microcirculation in a rat model of acute myocardial infarction. PLoS ONE 11(7):e0157233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. de Waard GA, Hollander MR, Teunissen PFA, Jansen MF, Eerenberg ES, Beek AM et al (2016) Changes in coronary blood flow after acute myocardial infarction: insights from a patient study and an experimental porcine model. JACC Cardiovasc Interv 9(6):602–613

    Article  PubMed  Google Scholar 

  45. Amier RP, Teunissen PFA, Marques KM, Knaapen P, van Royen N (2014) Invasive measurement of coronary microvascular resistance in patients with acute myocardial infarction treated by primary PCI. Heart Br Card Soc 100(1):13–20

    Google Scholar 

  46. Bekkers SCAM, Smulders MW, Passos VL, Leiner T, Waltenberger J, Gorgels APM et al (2010) Clinical implications of microvascular obstruction and intramyocardial haemorrhage in acute myocardial infarction using cardiovascular magnetic resonance imaging. Eur Radiol 20(11):2572–2578

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kotani J, Nanto S, Mintz GS, Kitakaze M, Ohara T, Morozumi T et al (2002) Plaque gruel of atheromatous coronary lesion may contribute to the no-reflow phenomenon in patients with acute coronary syndrome. Circulation 106(13):1672–1677

    Article  PubMed  Google Scholar 

  48. Li J, Wu L, Tian X, Zhang J, Shi Y (2015) Intravascular ultrasound observation of the mechanism of no-reflow phenomenon in acute myocardial infarction. PLoS ONE 10(6):e0119223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hamirani YS, Wong A, Kramer CM, Salerno M (2014) Effect of microvascular obstruction and intramyocardial hemorrhage by CMR on LV remodeling and outcomes after myocardial infarction: a systematic review and meta-analysis. JACC Cardiovasc Imaging 7(9):940–952

    Article  PubMed  PubMed Central  Google Scholar 

  50. Perazzolo Marra M, Lima JAC, Iliceto S (2011) MRI in acute myocardial infarction. Eur Heart J 32(3):284–293

    Article  PubMed  Google Scholar 

  51. Taylor AJ, Al-Saadi N, Abdel-Aty H, Schulz-Menger J, Messroghli DR, Friedrich MG (2004) Detection of acutely impaired microvascular reperfusion after infarct angioplasty with magnetic resonance imaging. Circulation 109(17):2080–2085

    Article  PubMed  Google Scholar 

  52. Anderson JL, Karagounis LA, Califf RM (1996) Metaanalysis of five reported studies on the relation of early coronary patency grades with mortality and outcomes after acute myocardial infarction. Am J Cardiol 78(1):1–8

    Article  CAS  PubMed  Google Scholar 

  53. Nijveldt R, Beek AM, Hirsch A, Stoel MG, Hofman MBM, Umans VAWM et al (2008) Functional recovery after acute myocardial infarction: comparison between angiography, electrocardiography, and cardiovascular magnetic resonance measures of microvascular injury. J Am Coll Cardiol 52(3):181–189

    Article  PubMed  Google Scholar 

  54. Faile BA, Guzzo JA, Tate DA, Nichols TC, Smith SC, Dehmer GJ (2000) Effect of sex, hemodynamics, body size, and other clinical variables on the corrected thrombolysis in myocardial infarction frame count used as an assessment of coronary blood flow. Am Heart J 140(2):308–314

    Article  CAS  PubMed  Google Scholar 

  55. Gibson CM, Ryan KA, Kelley M, Rizzo MJ, Mesley R, Murphy S et al (1999) Methodologic drift in the assessment of TIMI grade 3 flow and its implications with respect to the reporting of angiographic trial results. The TIMI Study Group. Am Heart J 137(6):1179–1184

    Article  CAS  PubMed  Google Scholar 

  56. Gibson CM, Cannon CP, Daley WL, Dodge JT, Alexander B, Marble SJ et al (1996) TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation 93(5):879–888

    Article  CAS  PubMed  Google Scholar 

  57. Ishihara M, Sato H, Tateishi H, Kawagoe T, Yoshimura M, Muraoka Y (1993) Impaired coronary flow reserve immediately after coronary angioplasty in patients with acute myocardial infarction. Br Heart J 69(4):288–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abaci A, Oguzhan A, Eryol NK, Ergin A (1999) Effect of potential confounding factors on the thrombolysis in myocardial infarction (TIMI) trial frame count and its reproducibility. Circulation 100(22):2219–2223

    Article  CAS  PubMed  Google Scholar 

  59. Gibson CM, Cannon CP, Murphy SA, Ryan KA, Mesley R, Marble SJ et al (2000) Relationship of TIMI myocardial perfusion grade to mortality after administration of thrombolytic drugs. Circulation 101(2):125–130

    Article  CAS  PubMed  Google Scholar 

  60. van’t Hof AW, Liem A, Suryapranata H, Hoorntje JC, de Boer MJ, Zijlstra F (1998) Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Zwolle Myocardial Infarction Study Group. Circulation 97(23):2302–2306

    Article  Google Scholar 

  61. Stone GW, Peterson MA, Lansky AJ, Dangas G, Mehran R, Leon MB (2002) Impact of normalized myocardial perfusion after successful angioplasty in acute myocardial infarction. J Am Coll Cardiol 39(4):591–597

    Article  PubMed  Google Scholar 

  62. Hoffmann R, Haager P, Lepper W, Franke A, Hanrath P (2003) Relation of coronary flow pattern to myocardial blush grade in patients with first acute myocardial infarction. Heart Br Card Soc 89(10):1147–1151

    Article  CAS  Google Scholar 

  63. Patel B, Fisher M (2010) Therapeutic advances in myocardial microvascular resistance: unravelling the enigma. Pharmacol Ther 127(2):131–147

    Article  CAS  PubMed  Google Scholar 

  64. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD (1990) Effects of adenosine on human coronary arterial circulation. Circulation 82(5):1595–1606

    Article  CAS  PubMed  Google Scholar 

  65. Hasdai D, Gibbons RJ, Holmes DR, Higano ST, Lerman A (1997) Coronary endothelial dysfunction in humans is associated with myocardial perfusion defects. Circulation 96(10):3390–3395

    Article  CAS  PubMed  Google Scholar 

  66. Wei J, Mehta PK, Johnson BD, Samuels B, Kar S, Anderson RD et al (2012) Safety of coronary reactivity testing in women with no obstructive coronary artery disease: results from the NHLBI-sponsored WISE (Women’s Ischemia Syndrome Evaluation) study. JACC Cardiovasc Interv 5(6):646–653

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A (2015) Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv 8(11):1445–1453

    Article  PubMed  Google Scholar 

  68. Cemin R, Erlicher A, Fattor B, Pitscheider W, Cevese A (2008) Reduced coronary flow reserve and parasympathetic dysfunction in patients with cardiovascular syndrome X. Coron Artery Dis 19(1):1–7

    Article  PubMed  Google Scholar 

  69. Aslan G, Sade LE, Yetis B, Bozbas H, Eroglu S, Pirat B et al (2013) Flow in the left anterior descending coronary artery in patients with migraine headache. Am J Cardiol 112(10):1540–1544

    Article  PubMed  Google Scholar 

  70. Chade AR, Brosh D, Higano ST, Lennon RJ, Lerman LO, Lerman A (2006) Mild renal insufficiency is associated with reduced coronary flow in patients with non-obstructive coronary artery disease. Kidney Int 69(2):266–271

    Article  CAS  PubMed  Google Scholar 

  71. Di Franco A, Lanza GA, Di Monaco A, Sestito A, Lamendola P, Nerla R et al (2012) Coronary microvascular function and cortical pain processing in patients with silent positive exercise testing and normal coronary arteries. Am J Cardiol 109(12):1705–1710

    Article  PubMed  Google Scholar 

  72. Tondi P, Santoliquido A, Di Giorgio A, Sestito A, Sgueglia GA, Flore R et al (2011) Endothelial dysfunction as assessed by flow-mediated dilation in patients with cardiac syndrome X: role of inflammation. Eur Rev Med Pharmacol Sci 15(9):1074–1077

    CAS  PubMed  Google Scholar 

  73. Recio-Mayoral A, Rimoldi OE, Camici PG, Kaski JC (2013) Inflammation and microvascular dysfunction in cardiac syndrome X patients without conventional risk factors for coronary artery disease. JACC Cardiovasc Imaging 6(6):660–667

    Article  PubMed  Google Scholar 

  74. Taqueti VR, Ridker PM (2013) Inflammation, coronary flow reserve, and microvascular dysfunction: moving beyond cardiac syndrome X. JACC Cardiovasc Imaging 6(6):668–671

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM et al (2010) Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J Am Coll Cardiol 55(25):2825–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Halcox JPJ, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA et al (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106(6):653–658

    Article  PubMed  Google Scholar 

  77. Vermeltfoort IAC, Teule GJJ, van Dijk AB, Muntinga HJ, Raijmakers PGHM (2012) Long-term prognosis of patients with cardiac syndrome X: a review. Neth Heart J 20(9):365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marinescu MA, Löffler AI, Ouellette M, Smith L, Kramer CM, Bourque JM (2015) Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC Cardiovasc Imaging 8(2):210–220

    Article  PubMed  PubMed Central  Google Scholar 

  79. Meuwissen M, Chamuleau SAJ, Siebes M, de Winter RJ, Koch KT, Dijksman LM et al (2008) The prognostic value of combined intracoronary pressure and blood flow velocity measurements after deferral of percutaneous coronary intervention. Catheter Cardiovasc Interv 71(3):291–297

    Article  PubMed  Google Scholar 

  80. Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837, 837a–837d

  81. Dhawan SS, Corban MT, Nanjundappa RA, Eshtehardi P, McDaniel MC, Kwarteng CA et al (2012) Coronary microvascular dysfunction is associated with higher frequency of thin-cap fibroatheroma. Atherosclerosis 223(2):384–388

    Article  CAS  PubMed  Google Scholar 

  82. Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J et al (2012) Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation 126(15):1858–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Waard G de, Teunissen PF, Hollander MR, Jansen MF, Robbers L, Knaapen P et al (2014) Abstract 20337: implications of invasively measured coronary flow reserve on infarct size directly following reperfusion after acute myocardial infarction in both humans and an experimental pig model. Circulation 130(Suppl 2):A20337–A20337

    Google Scholar 

  84. Meimoun P, Malaquin D, Benali T, Boulanger J, Zemir H, Sayah S et al (2009) Non-invasive coronary flow reserve after successful primary angioplasty for acute anterior myocardial infarction is an independent predictor of left ventricular recovery and in-hospital cardiac events. J Am Soc Echocardiogr 22(9):1071–1079

    Article  PubMed  Google Scholar 

  85. Schwartz RS, Burke A, Farb A, Kaye D, Lesser JR, Henry TD et al (2009) Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: relation to epicardial plaque histopathology. J Am Coll Cardiol 54(23):2167–2173

    Article  PubMed  Google Scholar 

  86. Cuculi F, De Maria GL, Meier P, Dall’Armellina E, de Caterina AR, Channon KM et al (2014) Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction. J Am Coll Cardiol 64(18):1894–1904

    Article  PubMed  Google Scholar 

  87. Klug G, Mayr A, Schenk S, Esterhammer R, Schocke M, Nocker M et al (2012) Prognostic value at 5 years of microvascular obstruction after acute myocardial infarction assessed by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:46

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349(11):1027–1035

    Article  CAS  PubMed  Google Scholar 

  89. Johnson NP, Gould KL (2012) Integrating noninvasive absolute flow, coronary flow reserve, and ischemic thresholds into a comprehensive map of physiological severity. JACC Cardiovasc Imaging 5(4):430–440

    Article  PubMed  Google Scholar 

  90. van de Hoef TP, Echavarría-Pinto M, van Lavieren MA, Meuwissen M, Serruys PWJC, Tijssen JGP et al (2015) Diagnostic and prognostic implications of coronary flow capacity: a comprehensive cross-modality physiological concept in ischemic heart disease. JACC Cardiovasc Interv 8(13):1670–1680

    Article  PubMed  Google Scholar 

  91. Meuwissen M, Chamuleau SA, Siebes M, Schotborgh CE, Koch KT, de Winter RJ et al (2001) Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation 103(2):184–187

    Article  CAS  PubMed  Google Scholar 

  92. Di Mario C, Serruys PW (1995) Principles of interpretation of coronary velocity and pressure tracings. Eur Heart J 16 Suppl J:53–59

    Article  CAS  PubMed  Google Scholar 

  93. Seiler C, Kirkeeide RL, Gould KL (1992) Basic structure-function relations of the epicardial coronary vascular tree. Basis of quantitative coronary arteriography for diffuse coronary artery disease. Circulation 85(6):1987–2003

    Article  CAS  PubMed  Google Scholar 

  94. Seiler C, Kirkeeide RL, Gould KL (1993) Measurement from arteriograms of regional myocardial bed size distal to any point in the coronary vascular tree for assessing anatomic area at risk. J Am Coll Cardiol 21(3):783–797

    Article  CAS  PubMed  Google Scholar 

  95. Barbato E, Aarnoudse W, Aengevaeren WR, Werner G, Klauss V, Bojara W et al (2004) Validation of coronary flow reserve measurements by thermodilution in clinical practice. Eur Heart J 25(3):219–223

    Article  PubMed  Google Scholar 

  96. Carrick D, Haig C, Ahmed N, Carberry J, Teng Yue May V, McEntegart M et al (2016) Comparative prognostic utility of indices of microvascular function alone or in combination in patients with an acute ST-segment elevation myocardial infarction. Circulation 134(23):1833–1847

    Article  PubMed  PubMed Central  Google Scholar 

  97. McGeoch R, Watkins S, Berry C, Steedman T, Davie A, Byrne J et al (2010) The index of microcirculatory resistance measured acutely predicts the extent and severity of myocardial infarction in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 3(7):715–722

    Article  PubMed  Google Scholar 

  98. van’t Veer M, Adjedj J, Wijnbergen I, Tóth GG, Rutten MCM, Barbato E et al (2016) Novel monorail infusion catheter for volumetric coronary blood flow measurement in humans: in vitro validation. EuroIntervention 12(6):701–707

    Article  Google Scholar 

  99. Wijnbergen I, van’t Veer M, Lammers J, Ubachs J, Pijls NHJ (2016) Absolute coronary blood flow measurement and microvascular resistance in ST-elevation myocardial infarction in the acute and subacute phase. Cardiovasc Revasc Med 17(2):81–87

    Article  PubMed  Google Scholar 

  100. Bellamy RF (1978) Diastolic coronary artery pressure-flow relations in the dog. Circ Res 43(1):92–101

    Article  CAS  PubMed  Google Scholar 

  101. Mancini GB, McGillem MJ, DeBoe SF, Gallagher KP (1989) The diastolic hyperemic flow versus pressure relation. A new index of coronary stenosis severity and flow reserve. Circulation 80(4):941–950

    Article  CAS  PubMed  Google Scholar 

  102. Di Mario C, Krams R, Gil R, Serruys PW (1994) Slope of the instantaneous hyperemic diastolic coronary flow velocity-pressure relation. A new index for assessment of the physiological significance of coronary stenosis in humans. Circulation 90(3):1215–1224

    Article  CAS  PubMed  Google Scholar 

  103. Mancini GB, Cleary RM, DeBoe SF, Moore NB, Gallagher KP (1991) Instantaneous hyperemic flow-versus-pressure slope index. Microsphere validation of an alternative to measures of coronary reserve. Circulation 84(2):862–870

    Article  CAS  PubMed  Google Scholar 

  104. Cleary RM, Ayon D, Moore NB, DeBoe SF, Mancini GB (1992) Tachycardia, contractility and volume loading alter conventional indexes of coronary flow reserve, but not the instantaneous hyperemic flow versus pressure slope index. J Am Coll Cardiol 20(5):1261–1269

    Article  CAS  PubMed  Google Scholar 

  105. Cleary RM, Moore NB, DeBoe SF, Mancini GB (1993) Sensitivity and reproducibility of the instantaneous hyperemic flow versus pressure slope index compared to coronary flow reserve for the assessment of stenosis severity. Am Heart J 126(1):57–65

    Article  CAS  PubMed  Google Scholar 

  106. Escaned J, Colmenárez H, Ferrer MC, Gutiérrez M, Jiménez-Quevedo P, Hernández R et al (2009) Diastolic dysfunction in diabetic patients assessed with Doppler echocardiography: relationship with coronary atherosclerotic burden and microcirculatory impairment. Rev Esp Cardiol 62(12):1395–1403

    Article  PubMed  Google Scholar 

  107. Pijls NH, Bech GJ, De Bruyne B, van Straten A (1997) Clinical assessment of functional stenosis severity: use of coronary pressure measurements for the decision to bypass a lesion. Ann Thorac Surg 63(6 Suppl):S6–S11

    Article  CAS  PubMed  Google Scholar 

  108. Zhang Z, Takarada S, Molloi S (2011) Assessment of coronary microcirculation in a swine animal model. Am J Physiol Heart Circ Physiol 301(2):H402–H408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tanaka N, Takazawa K, Takeda K, Aikawa M, Shindo N, Amaya K, et al (2003) Coronary flow–pressure relationship distal to epicardial stenosis. Circ J 67(6):525–529

    Article  PubMed  Google Scholar 

  110. Shimada K, Sakanoue Y, Kobayashi Y, Ehara S, Hirose M, Nakamura Y et al (2003) Assessment of myocardial viability using coronary zero flow pressure after successful angioplasty in patients with acute anterior myocardial infarction. Heart Br Card Soc 89(1):71–76

    Article  CAS  Google Scholar 

  111. Van Herck PL, Carlier SG, Claeys MJ, Haine SE, Gorissen P, Miljoen H et al (2007) Coronary microvascular dysfunction after myocardial infarction: increased coronary zero flow pressure both in the infarcted and in the remote myocardium is mainly related to left ventricular filling pressure. Heart Br Card Soc 93(10):1231–1237

    Article  Google Scholar 

  112. Parker KH, Jones CJ (1990) Forward and backward running waves in the arteries: analysis using the method of characteristics. J Biomech Eng 112(3):322–326

    Article  CAS  PubMed  Google Scholar 

  113. Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K et al (2006) Evidence of a dominant backward-propagating “suction” wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 113(14):1768–1778

    Article  PubMed  Google Scholar 

  114. Ladwiniec A, White PA, Nijjer SS, O’Sullivan M, West NEJ, Davies JE et al (2016) Diastolic backward-traveling decompression (suction) wave correlates with simultaneously acquired indices of diastolic function and is reduced in left ventricular stunning. Circ Cardiovasc Interv 9(9). pii: e003779

  115. Davies JE, Sen S, Broyd C, Hadjiloizou N, Baksi J, Francis DP et al (2011) Arterial pulse wave dynamics after percutaneous aortic valve replacement: fall in coronary diastolic suction with increasing heart rate as a basis for angina symptoms in aortic stenosis. Circulation 124(14):1565–1572

    Article  PubMed  Google Scholar 

  116. Rolandi MC, Wiegerinck EMA, Casadonte L, Yong Z-Y, Koch KT, Vis M et al (2016) Transcatheter replacement of stenotic aortic valve normalizes cardiac-coronary interaction by restoration of systolic coronary flow dynamics as assessed by wave intensity analysis. Circ Cardiovasc Interv 9(4):e002356

    Article  PubMed  Google Scholar 

  117. Lockie TPE, Rolandi MC, Guilcher A, Perera D, De Silva K, Williams R et al (2012) Synergistic adaptations to exercise in the systemic and coronary circulations that underlie the warm-up angina phenomenon. Circulation 126(22):2565–2574

    Article  PubMed  Google Scholar 

  118. Rolandi MC, Nolte F, van de Hoef TP, Remmelink M, Baan J, Piek JJ et al (2012) Coronary wave intensity during the Valsalva manoeuvre in humans reflects altered intramural vessel compression responsible for extravascular resistance. J Physiol 590(18):4623–4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Camici P, Chiriatti G, Lorenzoni R, Bellina RC, Gistri R, Italiani G et al (1991) Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 17(4):879–886

    Article  CAS  PubMed  Google Scholar 

  120. Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA et al (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115(18):2418–2425

    Article  PubMed  Google Scholar 

  121. Broyd CJ, Nijjer S, Sen S, Petraco R, Jones S, Al-Lamee R et al (2016) Estimation of coronary wave intensity analysis using noninvasive techniques and its application to exercise physiology. Am J Physiol Heart Circ Physiol 310(5):H619–H627

    Article  PubMed  Google Scholar 

  122. Mohri M, Koyanagi M, Egashira K, Tagawa H, Ichiki T, Shimokawa H et al (1998) Angina pectoris caused by coronary microvascular spasm. Lancet 351(9110):1165–1169

    Article  CAS  PubMed  Google Scholar 

  123. Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U (2012) High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries). J Am Coll Cardiol 59(7):655–662

    Article  CAS  PubMed  Google Scholar 

  124. Zeiher AM, Drexler H, Wollschläger H, Just H (1991) Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis. Circulation 84(5):1984–1992

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Escaned.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejía-Rentería, H., van der Hoeven, N., van de Hoef, T.P. et al. Targeting the dominant mechanism of coronary microvascular dysfunction with intracoronary physiology tests. Int J Cardiovasc Imaging 33, 1041–1059 (2017). https://doi.org/10.1007/s10554-017-1136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-017-1136-9

Keywords

Navigation