Skip to main content

Advertisement

Log in

Identification and characterization of metastasis-associated gene/protein 1 (MTA1)

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Metastasis is a complex series of sequential events involving several gene products and the regulated expression of several tumor cell genes. Using rat mammary adenocarcinoma cell lines of differing metastatic potentials and a differential complementary DNA (cDNA) hybridization method, our laboratory embarked in 1992 on a project to identify candidate metastasis-associated genes. Among the genes that were found to be abundantly overexpressed in highly metastatic rat cell lines compared to poorly metastatic cell lines, we identified a completely novel gene without any homologous or related genes in the database in 1994. The full-length cDNA of this gene was cloned, sequenced, and named mta1 (metastasis-associated gene 1), and eventually, its human cDNA counterpart, MTA1, was also cloned and sequenced by our group. MTA1 has now been identified as one of the members of a gene family (MTA gene family). The products of the MTA genes, the MTA proteins, are transcriptional co-regulators that function in histone deacetylation and nucleosome remodeling. In this review, we will briefly discuss the researches for the identification and characterization of the mta1 gene, its human counterpart MTA1, and their protein products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liotta, L. A. (1986). Tumor invasion and metastases—role of the extracellular matrix: Rhoads memorial award lecture. Cancer Research, 46(1), 1–7.

    CAS  PubMed  Google Scholar 

  2. Nicolson, G. L. (1988). Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochimica et Biophysica Acta, 948(2), 175–224.

    CAS  PubMed  Google Scholar 

  3. Chambers, A. F., & Tuck, A. B. (1993). Ras-responsive genes and tumor metastasis. Critical Review of Oncogenesis, 4(2), 95–114.

    CAS  Google Scholar 

  4. Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.

    CAS  PubMed  Google Scholar 

  5. Nawa, A., Nishimori, K., Lin, P., Maki, Y., Moue, K., Sawada, H., et al. (2000). Tumor metastasis-associated human MTA1 gene: its deduced protein sequence, localization, and association with breast cancer cell proliferation using antisense phosphorothioate oligonucleotides. Journal of Cell Biochemistry, 79(2), 202–212.

    Article  CAS  Google Scholar 

  6. Toh, Y., Oki, E., Oda, S., Tokunaga, E., Ohno, S., Maehara, Y., et al. (1997). Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. International Journal of Cancer, 74(4), 459–463.

    Article  CAS  Google Scholar 

  7. Toh, Y., Kuwano, H., Mori, M., Nicolson, G. L., & Sugimachi, K. (1999). Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas. British Journal of Cancer, 79(11–12), 1723–1726.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Neri, A., Welch, D., Kawaguchi, T., & Nicolson, G. L. (1982). Development and biologic properties of malignant cell sublines and clones of a spontaneously metastasizing rat mammary adenocarcinoma. Journal of National Cancer Institute, 68(3), 507–517.

    CAS  Google Scholar 

  9. Nicolson, G. L., Gallick, G. E., Spohn, W. H., Lembo, T. M., & Tainsky, M. A. (1992). Transfection of activated c-H-rasEJ/psv2neo or psv2neo genes into rat mammary cells: rapid stimulation of clonal diversification of spontaneous metastatic and cell-surface properties. Oncogene, 7(6), 1127–1135.

    CAS  PubMed  Google Scholar 

  10. Pencil, S. D., Toh, Y., & Nicolson, G. L. (1993). Candidate metastasis-associated genes of the rat 13762NF mammary adenocarcinoma. Breast Cancer Research and Treatment, 25(2), 165–174.

    Article  CAS  PubMed  Google Scholar 

  11. Taniguchi, S., Miyamoto, S., Sadano, H., & Kobayashi, H. (1991). Rat elongation factor 1 alpha: sequence of cDNA from a highly metastatic fos-transferred cell line. Nucleic Acids Research, 19(24), 6949.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Thompson, E. W., Brunner, N., Torri, J., Johnson, M. D., Boulay, V., Wright, A., et al. (1993). The invasive and metastatic properties of hormone-independent but hormone-responsive variants of MCF-7 human breast cancer cells. Clinical and Experimental Metastasis, 11(1), 15–26.

    Article  CAS  PubMed  Google Scholar 

  13. Brunner, N., Frandsen, T. L., Holst-Hansen, C., Bei, M., Thompson, E. W., Wakeling, A. E., et al. (1993). MCF7/LCC2: a 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antiestrogen ICI 182,780. Cancer Research, 53(14), 3229–3232.

    CAS  PubMed  Google Scholar 

  14. Zhang, R. D., Fidler, I. J., & Price, J. E. (1991). Relative malignant potential of human breast carcinoma cell lines established from pleural effusions and a brain metastasis. Invasion and Metastasis, 11(4), 204–215.

    CAS  PubMed  Google Scholar 

  15. Toh, Y., Pencil, S. D., & Nicolson, G. L. (1995). Analysis of the complete sequence of the novel metastasis-associated candidate gene, mta1, differentially expressed in mammary adenocarcinoma and breast cancer cell lines. Gene, 159(1), 97–104.

    Article  CAS  PubMed  Google Scholar 

  16. Manavathi, B., Singh, K., & Kumar, R. (2007). MTA family of coregulators in nuclear receptor biology and pathology. Nuclear Receptor Signaling, 5, 1–8.

    Article  Google Scholar 

  17. Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clinical and Experimental Metastasis, 26(3), 215–227.

    Article  CAS  PubMed  Google Scholar 

  18. Toh, Y., & Nicolson, G. L. (2011). MTA1 of the MTA (metastasis-associated) gene family and its encoded proteins: molecular and regulatory functions and its role in human cancer progression. Atlas of Genetics and Cytogenetics in Oncology and Haematology, 15(3), 303–315.

    Google Scholar 

  19. Toh, Y., & Nicolson, G. L. (2013). Signaling pathways of MTA family proteins as regulators of cancer progression and metastasis. In R. R. Resende & H. Ulrich (Eds.), Trends in stem cell proliferation and cancer research (pp. 251–275). Dordrecht: Springer.

    Chapter  Google Scholar 

  20. Singh, R. R., & Kumar, R. (2007). MTA family of transcriptional metaregulators in mammary gland morphogenesis and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 12(2–3), 115–125.

    Article  PubMed  Google Scholar 

  21. Millard, C. J., Watson, P. J., Celardo, I., Gordiyenko, Y., Cowley, S. M., Robinson, C. V., et al. (2013). Class I HDACs share a common mechanism of regulation by inositol phosphates. Molecular Cell, 51(1), 57–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Alqarni, S. S., Murthy, A., Zhang, W., Przewloka, M. R., Silva, A. P., Watson, A. A., et al. (2014). Insight into the architecture of the NuRD complex: structure of the RbAp48-MTA1 subcomplex. Journal of Biological Chemistry, 289(32), 21844–21855.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bowen, N. J., Fujita, N., Kajita, M., & Wade, P. A. (2004). Mi-2/NuRD: multiple complexes for many purposes. Biochimica et Biophysica Acta, 1677(1–3), 52–57.

    Article  CAS  PubMed  Google Scholar 

  24. Tong, J. K., Hassig, C. A., Schnitzler, G. R., Kingston, R. E., & Schreiber, S. L. (1998). Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature, 395(6705), 917–921.

    Article  CAS  PubMed  Google Scholar 

  25. Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NuRD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes and Development, 13(15), 1924–1935.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wade, P. A., Gegonne, A., Jones, P. L., Ballesta, R. E., Aubry, F., & Wolffe, A. P. (1999). Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genetics, 23(1), 62–66.

    Article  CAS  PubMed  Google Scholar 

  28. Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from members of Department of Gastroenterological Surgery, National Kyushu Cancer Center, Japan, and foundation and private donations to the Institute for Molecular Medicine.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Toh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toh, Y., Nicolson, G.L. Identification and characterization of metastasis-associated gene/protein 1 (MTA1). Cancer Metastasis Rev 33, 837–842 (2014). https://doi.org/10.1007/s10555-014-9510-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9510-8

Keywords

Navigation