Skip to main content

Advertisement

Log in

Storage and qualification of viable intact human amniotic graft and technology transfer to a tissue bank

  • Brief Communication
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Human amniotic membrane (hAM) is known to have good potential to help the regeneration of tissue. It has been used for over 100 years in many medical disciplines because of its properties, namely a scaffold containing stem cells and growth factors, with low immunogenicity and anti-microbial, anti-inflammatory, anti-fibrotic and analgesic properties. In order to use this “boosted membrane” as an advanced therapeutic medicinal product for bone repair, we aimed to observe the influence of tissue culture and/or cryopreservation on cell viability and tissue structure, and secondly, to adapt to a tissue bank, identify easy processes to store hAM containing viable cells and to verify the quality of the graft before its release for use. To this end, we tested different published culture or cryopreservation storage conditions and cell viability assays. Tissue structure was evaluated by Giemsa staining and was compared to histological analysis. Preliminary results show no dramatic decrease in cell viability in cultured hAM as compared to cryopreserved hAM, but tissue structure alterations were observed with both storage conditions. Histological and immunohistochemical data highlight that tissue damage was associated with significantly modified protein expression, which could lead to a possible loss of differentiation potential. Finally, we report that trypan blue and Giemsa staining could constitute controls that are “materially and easily transferable” to a tissue bank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adds PJ, Hunt CJ, Dart JK (2001) Amniotic membrane grafts, “fresh” or frozen? a clinical and in vitro comparison. Br J Ophthalmol 85(8):905–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burgos H, Faulk WP (1981) The maintenance of human amniotic membranes in culture. Br J Obstet Gynaecol 88(3):294–300

    Article  CAS  PubMed  Google Scholar 

  • Castro-Malaspina H, Gay RE, Resnick G, Kapoor N, Meyers P, Chiarieri D, McKenzie S et al (1980) Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56(2):289–301

    CAS  PubMed  Google Scholar 

  • Deschaseaux F, Gindraux F, Saadi R, Obert L, Chalmers D, Herve P (2003) Direct selection of human bone marrow mesenchymal stem cells using an anti-CD49a antibody reveals their CD45med, low phenotype. Br J Haematol 122(3):506–517

    Article  PubMed  Google Scholar 

  • Dohrmann P, Fory R, Rupp K, Hamelmann H (1990) Animal experiment studies of amnion transplantation as peritoneal replacement. Paper presented at the annual congress of the German society of surgery, Berlin, 17–21 April 1990. Langenbecks Arch Chir Suppl II Verh Dtsch Ges Chir pp 1055–1059

  • Franck O, Descargues G, Menguy E, Courville P, Martin J, Brasseur G, Muraine M (2000) Technique of harvesting and preparation of amniotic membranes. J Fr Ophtalmol 23(7):729–734

    CAS  PubMed  Google Scholar 

  • Gindraux F, Selmani Z, Obert L, Davani S, Tiberghien P, Herve P, Deschaseaux F (2007) Human and rodent bone marrow mesenchymal stem cells that express primitive stem cell markers can be directly enriched by using the CD49a molecule. Cell Tissue Res 327(3):471–483

    Article  CAS  PubMed  Google Scholar 

  • Gindraux F, Obert L, Laganier L, Barnouin L (2010) Industrial approach in developing an advanced therapy product for bone repair. J Tissue Eng Regen Med 4(3):194–204

    Article  CAS  PubMed  Google Scholar 

  • Gindraux F, Laurent R, Nicod L, de Billy B, Meyer C, Zwetyenga N, Wajszczak L et al (2013) Human amniotic membrane: clinical uses, patents and marketed products. Recent Pat Regen Med 3(3):193–214

    Article  CAS  Google Scholar 

  • Guo Q, Lu X, Xue Y, Zheng H, Zhao X, Zhao H (2012) A new candidate substrate for cell-matrix adhesion study: the acellular human amniotic matrix. J Biomed Biotechnol 2012:1

    Article  PubMed  Google Scholar 

  • Hennerbichler S, Reichl B, Pleiner D, Gabriel C, Eibl J, Redl H (2007) The influence of various storage conditions on cell viability in amniotic membrane. Cell Tissue Bank 8(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Houvet P, Obert L (2013) Upper limb cumulative trauma disorders for the orthopaedic surgeon. Orthop Traumatol Surg Res 99(Suppl 1):S104–S114

    Article  CAS  PubMed  Google Scholar 

  • Insausti CL, Blanquer M, Bleda P, Iniesta P, Majado MJ, Castellanos G, Moraleda JM (2010) The amniotic membrane as a source of stem cells. Histol Histopathol 25(1):91–98

    CAS  PubMed  Google Scholar 

  • Kjaergaard N, Helmig RB, Schonheyder HC, Uldbjerg N, Hansen ES, Madsen H (1999) Chorioamniotic membranes constitute a competent barrier to group b streptococcus in vitro. Eur J Obstet Gynecol Reprod Biol 83(2):165–169

    Article  CAS  PubMed  Google Scholar 

  • Kruse FE, Joussen AM, Rohrschneider K, You L, Sinn B, Baumann J, Volcker HE (2000) Cryopreserved human amniotic membrane for ocular surface reconstruction. Graefes Arch Clin Exp Ophthalmol 238(1):68–75

    Article  CAS  PubMed  Google Scholar 

  • Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42(7):1539–1546

    CAS  PubMed  Google Scholar 

  • Li H, Niederkorn JY, Neelam S, Mayhew E, Word RA, McCulley JP, Alizadeh H (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 46(3):900–907

    Article  PubMed  Google Scholar 

  • Lindenmair A, Wolbank S, Stadler G, Meinl A, Peterbauer-Scherb A, Eibl J, Polin H et al (2010) Osteogenic differentiation of intact human amniotic membrane. Biomaterials 31(33):8659–8665

    Article  CAS  PubMed  Google Scholar 

  • Mamede AC, Carvalho MJ, Abrantes AM, Laranjo M, Maia CJ, Botelho MF (2012) Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349(2):447–458

    Article  CAS  PubMed  Google Scholar 

  • Masquelet AC, Obert L (2010) Induced membrane technique for bone defects in the hand and wrist. Chir Main 29(Suppl 1):S221–S224

    Article  PubMed  Google Scholar 

  • Morel P (2011) Ten years of nucleic acid testing: lessons and prospects. Transfus Clin Biol 18(2):133–139

    Article  CAS  PubMed  Google Scholar 

  • Obert L, Deschaseaux F, Garbuio P (2005) Critical analysis and efficacy of BMPs in long bones non-union. Injury 36(Suppl 3):S38–S42

    Article  PubMed  Google Scholar 

  • Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M, Hennerbichler S et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 26(2):300–311

    Article  PubMed  Google Scholar 

  • Parolini O, Alviano F, Bergwerf I, Boraschi D, De Bari C, De Waele P, Dominici M et al (2010) Toward cell therapy using placenta-derived cells: disease mechanisms, cell biology, preclinical studies, and regulatory aspects at the round table. Stem Cells Dev 19(2):143–154

    Article  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  • Rama P, Giannini R, Bruni A, Gatto C, Tiso R, Ponzin D (2001) Further evaluation of amniotic membrane banking for transplantation in ocular surface diseases. Cell Tissue Bank 2(3):155–163

    Article  CAS  PubMed  Google Scholar 

  • Rennie K, Gruslin A, Hengstschlager M, Pei D, Cai J, Nikaido T, Bani-Yaghoub M (2012) Applications of amniotic membrane and fluid in stem cell biology and regenerative medicine. Stem Cells Int 2012:1–13

    Article  Google Scholar 

  • Riau AK, Beuerman RW, Lim LS, Mehta JS (2009) Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 31(2):216–225

    Article  PubMed  Google Scholar 

  • Rodrigues EB, Costa EF, Penha FM, Melo GB, Bottós J, Dib E, Furlani B, Lima VC, Maia M, Meyer CH, Höfling-Lima AL, Farah ME (2009) The use of vital dyes in ocular surgery. Surv Ophthalmol 54(5):576–617

    Article  PubMed  Google Scholar 

  • Stadler G, Hennerbichler S, Lindenmair A, Peterbauer A, Hofer K, van Griensven M, Gabriel C et al (2008) Phenotypic shift of human amniotic epithelial cells in culture is associated with reduced osteogenic differentiation in vitro. Cytotherapy 10(7):743–752

    Article  CAS  PubMed  Google Scholar 

  • Stock SJ, Kelly RW, Riley SC, Calder AA (2007) Natural antimicrobial production by the amnion. Am J Obstet Gynecol 196(3):255e1–e6

    Google Scholar 

  • Tao H, Fan H (2009) Implantation of amniotic membrane to reduce postlaminectomy epidural adhesions. Eur Spine J 18(8):1202–1212

    Article  PubMed Central  PubMed  Google Scholar 

  • Tong Y (2012) The utility model claims a composite anti-freezing fluid and application thereof and using the resisting freezing liquid storing the amniotic membrane method for composite anti-freezing liquid, and method for preserving human amnion by using same. CN102763639, 7-11-2012

  • Trelford JD, Trelford-Sauder M (1979) The amnion in surgery, past and present. Am J Obstet Gynecol 134(7):833–845

    CAS  PubMed  Google Scholar 

  • von Versen-Hoeynck F, Steinfeld AP, Becker J, Hermel M, Rath W, Hesselbarth U (2008) Sterilization and preservation influence the biophysical properties of human amnion grafts. Biologicals 36(4):248–255

    Article  Google Scholar 

  • von Versen-Hoynck F, Syring C, Bachmann S, Moller DE (2004) The influence of different preservation and sterilisation steps on the histological properties of amnion allografts-light and scanning electron microscopic studies. Cell Tissue Bank 5(1):45–56

    Article  Google Scholar 

  • Wilshaw SP, Kearney JN, Fisher J, Ingham E (2006) Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng 12(8):2117–2129

    Article  CAS  PubMed  Google Scholar 

  • Wolbank S, Hildner F, Redl H, van Griensven M, Gabriel C, Hennerbichler S (2009) Impact of human amniotic membrane preparation on release of angiogenic factors. J Tissue Eng Regen Med 3(8):651–654

    Article  CAS  PubMed  Google Scholar 

  • Zappaterra T, Ghislandi X, Adam A, Huard S, Gindraux F, Gallinet D, Lepage D et al (2011) Induced membrane technique for the reconstruction of bone defects in upper limb: a prospective single center study of nine cases. Chir Main 30(4):255–263

    Article  CAS  PubMed  Google Scholar 

  • Zhou H (2010) Amniotic membrane long-term preserving fluid and preparation method thereof. CN102132697, 27-07-2011

  • Zwetyenga N, Fricain JC, De Mones E, Gindraux F (2012) Induced membrane technique in oral and maxillofacial reconstruction. Rev Stomatol Chir Maxillofac 113(4):231–238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to the local tissue bank “Cell and tissue engineering activities” from French blood transfusion center “Bourgogne Franche-Comté”, Besançon, France for amniotic membranes collection. Thanks also to Martine Melin and Daniel Hartmann (Novotec, Lyon, France) for histological studies and scientific advice. The authors also thank Fiona Ecarnot (EA3920, University Hospital Besancon, France) for editorial assistance. This work was supported by the Foundation of Transplantation (FDTSFV), Saint Apollinaire, France.

Conflict of interests

The authors confirm that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Laurent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurent, R., Nallet, A., Obert, L. et al. Storage and qualification of viable intact human amniotic graft and technology transfer to a tissue bank. Cell Tissue Bank 15, 267–275 (2014). https://doi.org/10.1007/s10561-014-9437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-014-9437-x

Keywords

Navigation