Skip to main content
Log in

A comparative study of gas phase esterification on solid acid catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

For the first time, a comprehensive comparison of the intrinsic activities of solid acid catalysts in terms of turnover frequency (TOF) is reported for the gas-phase esterification of acetic acid with methanol. The catalysts studied included a zeolite (Hβ), two modified zirconias (sulfated zirconia, SZ; and tungstated zirconia, WZ), and an acidic resin-silica composite (Nafion/silica, SAC-13). Activities on a per weight basis decreased in the following order: Hβ ∼ SAC-13 ≫ SZ >  WZ at 130 °C. However, on a rate-per-site basis (TOF), all catalysts showed comparable activities. The TOF results suggest that the acid sites of these catalysts have similar capacity for effectively catalyzing esterification. All catalysts deactivated to a quasi-steady-state rate with TOS. Regeneration experiments suggested that catalyst deactivation was due mainly to site blockage by carbonaceous deposits. Selective poisoning experiments showed that the reaction predominately took place on Brønsted acid sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. Lotero E., Liu Y.J., Lopez D.E., Suwannakarn K., Bruce D.A., Goodwin Jr. J.G. (2005) Ind. Eng. Chem. Res. 44:5353

    Article  CAS  Google Scholar 

  2. Chen X., Xu Z., Okuhara T. (1999) Appl. Catal. A 180:261

    Article  CAS  Google Scholar 

  3. Heidekum A., Harmer M.A., Hoelderich W.F. (1999) J. Catal. 181:217

    Article  CAS  Google Scholar 

  4. Kirumakki S.R., Nagaraju N., Narayanan S. (2004) Appl. Catal. A 273:1

    Article  CAS  Google Scholar 

  5. Omota F., Dimian A.C., Bliek A. (2003) Chem. Eng. Sci. 58:3175

    Article  CAS  Google Scholar 

  6. Matsuhashi H., Miyazaki H., Kawamura Y., Nakamurac H., Arata K. (2001) Chem. Mat. 13:3038

    Article  CAS  Google Scholar 

  7. Ramu S., Lingaiah N., Devi B.L.A.P., Prasad R.B.N., Suryanarayana I., Prasad S.S. (2004) Appl. Catal. A 276:163

    Article  CAS  Google Scholar 

  8. Y. Izumi and K. Urabe, Chem. Lett. (1981) 663.

  9. Sepulveda J.H., Yori J.C., Vera C.R. (2005). Appl. Catal. A 288:18

    Article  CAS  Google Scholar 

  10. Iizuka T., Fujie S., Ushikubo T., Chen Z.H., Tanabe K. (1986). Appl. Catal. 28:1

    Article  CAS  Google Scholar 

  11. Jermy B.R., Pandurangan A. (2005). Appl. Catal. A 288:25

    Article  CAS  Google Scholar 

  12. Mbaraka I.K., Radu D.R., Lin V.S.Y., Shanks B.H. (2003) J. Catal. 219:329

    Article  CAS  Google Scholar 

  13. Chu W.L., Yang X.G., Ye X.K., Wu Y. (1996). Appl. Catal. A 145:125

    Article  CAS  Google Scholar 

  14. Wu K.C., Chen Y.W. (2004). Appl. Catal. A 257:33

    Article  CAS  Google Scholar 

  15. Barrett E.P., Joyner L.G., Halenda P.P. (1951). J. Am. Chem. Soc. 73:373

    Article  CAS  Google Scholar 

  16. Liu Y.J., Lotero E., Goodwin J.G. Jr. (2005) J. Mol. Catal. A. 245:132

    Article  Google Scholar 

  17. Camiloti A.M., Jahn S.L., VelascoN.D, Moura L.F., Cardoso D. (1999) Appl. Catal. A. 182:107

    Article  CAS  Google Scholar 

  18. Liu Y.J., Lotero E., Goodwin J.G. Jr, (2006) J. Catal. 242:278

    Article  CAS  Google Scholar 

  19. Kim S.Y., Goodwin J.G. Jr., Hammache S., Auroux A., Galloway D. (2001) J. Catal. 201:1

    Article  CAS  Google Scholar 

  20. Shimizu K., Venkatraman T.N., Song W.G. (2002) Appl. Catal. A. 224:77

    Article  CAS  Google Scholar 

  21. Ostrovskii N.M., Bukhavtsova N.M., Duplyakin V.K., (1994) React. Kinet. Catal. Lett. 53:253

    Article  CAS  Google Scholar 

  22. Palani A., Pandurangan A. (2005) J. Mol. Catal. A. 226:129

    Article  CAS  Google Scholar 

  23. Bilbao-Elorriaga J., Gonzalez-Marcos J.A., Gonzalez-Velasco J.R., Arandes-Esteban J.M., (1983) Afinidad, 40:459

    CAS  Google Scholar 

  24. Li L., Yoshinaga Y., Okuhara T. (2002) Phys. Chem. Chem. Phys. 4:6129

    Article  CAS  Google Scholar 

  25. Macht J., Baertsch C.D., May-Lozano M., Soled S.L., Wang Y., Iglesia E. (2004) J. Catal. 227:479

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the US Department of Agriculture (Award No 68-3A75-3-147). The authors would like to thank D.E. Lopez for BET surface area analyses and Magnesium Electron (MEL) for providing the WZ and SZ catalysts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Goodwin Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suwannakarn, K., Lotero, E. & Goodwin, J.G. A comparative study of gas phase esterification on solid acid catalysts. Catal Lett 114, 122–128 (2007). https://doi.org/10.1007/s10562-007-9054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9054-4

Keywords

Navigation