Skip to main content
Log in

Dependence of Gas-Phase Crotonaldehyde Hydrogenation Selectivity and Activity on the Size of Pt Nanoparticles (1.7–7.1 nm) Supported on SBA-15

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The selectivity and activity for the hydrogenation of crotonaldehyde to crotyl alcohol and butyraldehyde was studied over a series of Pt nanoparticles (diameter of 1.7, 2.9, 3.6, and 7.1 nm). The nanoparticles were synthesized by alcohol reduction of a Pt salt in the presence of poly(vinylpyrrolidone) (PVP), followed by incorporation into mesoporous SBA-15 silica. The rate of crotonaldehyde hydrogenation and selectivity towards crotyl alcohol both increase with increasing particle size. With an increase in particle size from 1.7 nm to 7.1 nm, the selectivity towards crotyl alcohol increases from 13.7% to 33.9% (8 Torr crotonaldehyde, 160 Torr H2 and 353 K). The turnover frequency increases from 2.1 × 10−2 s−1 to 4.8 × 10−2 s−1 with increasing particle size. Additionally, the decarbonylation pathway to form propene and CO is enhanced over smaller nanoparticles. The apparent activation energy remains constant (~16 kcal mol−1 for the formation of butyraldehyde and ~8 kcal mol−1 for the formation of crotyl alcohol) as a function of particle size as does the reaction order in H2, which is unity. In the presence of 130–260 mTorr CO, the reaction rate decreases for all products with a CO reaction order of −1 to −1.4 for crotyl alcohol and butyraldehyde. Hydrogen reduction at 673–723 K results in increased activity and selectivity relative to reduction at either higher or lower temperature; this is discussed with respect to the organic capping agent, PVP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aiken JD, Finke RG (1999) J Mol Catal A: Chem 145:1

    Article  CAS  Google Scholar 

  2. Roucoux A, Schulz J, Patin H (2002) Chem Rev 102:3757

    Article  CAS  Google Scholar 

  3. Lang HF, May RA, Iversen BL, Chandler BD (2003) J Am Chem Soc 125:14832

    Article  CAS  Google Scholar 

  4. Konya Z, Puntes VF, Kiricsi I, Zhu J, Ager JW, Ko MK, Frei H, Alivisatos P, Somorjai GA (2003) Chem Mater 15:1242

    Article  CAS  Google Scholar 

  5. Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) J Phys Chem B 109:2192

    Article  CAS  Google Scholar 

  6. Song H, Rioux RM, Hoefelmeyer JD, Komor R, Niesz K, Grass M, Yang PD, Somorjai GA (2006) J Am Chem Soc 128:3027

    Article  CAS  Google Scholar 

  7. Rioux RM, Hoefelmeyer JD, Grass M, Song H, Niesz K, Yang PD, Somorjai GA (2008) Langmuir 24:198

    Article  CAS  Google Scholar 

  8. Rioux RM, Komor R, Song H, Hoefelmeyer JD, Grass M, Niesz K, Yang PD, Somorjai GA (2008) J Catal 254:1

    Article  CAS  Google Scholar 

  9. Grass ME, Yue Y, Habas SE, Rioux RM, Teall CI, Yang P, Somorjai GA (2008) J Phys Chem C 112:4797

    Article  CAS  Google Scholar 

  10. Gallezot P, Richard D (1998) Cat Rev Sci Eng 40:81

    Article  CAS  Google Scholar 

  11. Santori GF, Casella ML, Siri GJ, Aduriz HR, Ferretti OA (2002) React Kinet Catal Lett 75:225

    Article  CAS  Google Scholar 

  12. Giroir-Fendler A, Richard D, Gallezot P (1990) Catal Lett 5:175

    Article  CAS  Google Scholar 

  13. Englisch M, Jentys A, Lercher JA (1997) J Catal 166:25

    Article  CAS  Google Scholar 

  14. Delbecq F, Sautet P (1995) J Catal 152:217

    Article  CAS  Google Scholar 

  15. Venezia AM, Liotta LF, Pantaleo G, La Parola V, Deganello G, Beck A, Koppany Z, Frey K, Horvath D, Guczi L (2003) Appl Catal A: Gen 251:359

    Article  CAS  Google Scholar 

  16. Deutsch DS, Siani A, Fanson PT, Hirata H, Matsumoto S, Williams CT, Amiridis MD (2007) J Phys Chem C 111:4246

    Article  CAS  Google Scholar 

  17. Song H, Kim F, Connor S, Somorjai GA, Yang PD (2005) J Phys Chem B 109:188

    Article  CAS  Google Scholar 

  18. Wang Y, Ren J, Deng K, Gui L, Tang Y (2000) Chem Mater 12:1622

    Article  Google Scholar 

  19. Teranishi T, Hosoe M, Tanaka T, Miyake M (1999) J Phys Chem B 103:3818

    Article  CAS  Google Scholar 

  20. Grubbs RB (2007) Polym Rev 47:197

    Article  CAS  Google Scholar 

  21. Du YK, Yang P, Mou ZG, Hua NP, Jiang L (2006) J Appl Poly Sci 99:23

    Article  CAS  Google Scholar 

  22. Birchem T, Pradier CM, Berthier Y, Cordier G (1994) J Catal 146:503

    Article  CAS  Google Scholar 

  23. Waghray A, Blackmond DG (1993) J Phys Chem 97:6002

    Article  CAS  Google Scholar 

  24. Singh UK, Vannice MA (2000) J Catal 191:165

    Article  CAS  Google Scholar 

  25. Shekhar R, Barteau MA (1994) Surf Sci 319:298

    Article  CAS  Google Scholar 

  26. Beccat P, Bertolini JC, Gauthier Y, Massardier J, Ruiz P (1990) J Catal 126:451

    Article  CAS  Google Scholar 

  27. Boudart M (1972) AIChE J 18:465

    Article  CAS  Google Scholar 

  28. Baker RTK, Prestridge EB, Garten RL (1979) J Catal 56:390

    Article  CAS  Google Scholar 

  29. Coloma F, Sepulveda-Escribano A, Fierro JLG, Rodriguez-Reinoso F (1997) Appl Catal A: Gen 150:165

    Article  CAS  Google Scholar 

  30. Borodko Y, Humphrey SM, Tilley TD, Frei H, Somorjai GA (2007) J Phys Chem C 111:6288

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. This work was also supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor A. Somorjai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grass, M.E., Rioux, R.M. & Somorjai, G.A. Dependence of Gas-Phase Crotonaldehyde Hydrogenation Selectivity and Activity on the Size of Pt Nanoparticles (1.7–7.1 nm) Supported on SBA-15. Catal Lett 128, 1–8 (2009). https://doi.org/10.1007/s10562-008-9754-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9754-4

Keywords

Navigation