Skip to main content
Log in

Comparative Theoretical Study of Adsorption and Dehydrogenation of Formic Acid, Hydrazine and Isopropanol on Pd(111) Surface

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Adsorption and dehydrogenation of formic acid, hydrazine and isopropanol have been investigated using periodic density functional theory (DFT). All the intermediates and transition states have been optimized and the preferred reaction pathways have been found. The adsorption energies for the most stable mode of formic acid, hydrazine and isopropanol are 38.6 kJ/mol, 63.9 kJ/mol and 46.1 kJ/mol, respectively. The dehydrogenation mechanisms of formic acid, hydrazine and isopropanol on Pd(111) surface are proposed and calculated. According to the calculation results, dehydrogenation of formate is more favorable than those of other molecules/groups, and that can be an explanation for the high reactivity of formats in Pd catalyzed transfer hydrogenation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rajagopal S, Spatola AF (1995) J Org Chem 60:1347

    Article  CAS  Google Scholar 

  2. Arcadi A, Gerichelli G, Chiarini M, Vico R, Zorzan D (2004) Eur J Org Chem 2004:3404

    Article  Google Scholar 

  3. Cellier PP, Spindler JF, Taillefer M et al (2003) Tetrahedron Lett 44:7191

    Article  CAS  Google Scholar 

  4. Ukisu Y (2008) Appl Catal A: Gen 349:229

    Article  CAS  Google Scholar 

  5. Sydnes MO, Isobe M (2008) Tetrahedron Lett 49:1199

    Article  CAS  Google Scholar 

  6. Wiener H, Blum J, Sasson Y (1991) J Org Chem 56:4481

    Article  CAS  Google Scholar 

  7. Kopinke FD, Machenzie K, Koehler R, Georgi A (2004) Appl Catal A: Gen 271:119

    Article  CAS  Google Scholar 

  8. Reddy PG, Baskaran S (2002) Tetrahedron Lett 43:1919

    Article  CAS  Google Scholar 

  9. Tike MA, Mahajani VV (2006) Chem Eng J 123:31

    Article  CAS  Google Scholar 

  10. German ED, Sheintuch M (2008) J Phys Chem C 112:14377

    Article  CAS  Google Scholar 

  11. Srivastava GP, Weaire D (1987) Adv Phys 26:463

    Article  Google Scholar 

  12. Marlo M, Milman V (2000) Phys Rev B 62:2899

    Article  CAS  Google Scholar 

  13. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Rev Mod Phys 64:1045

    Article  CAS  Google Scholar 

  14. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  15. Gajdos M, Eichler A, Hafner J (2004) J Phys: Condens Matter 16:1141

    Article  CAS  Google Scholar 

  16. Van Santen RA, Neurock M (1995) Catal Rev Sci Eng 37:557

    Article  Google Scholar 

  17. Gil A, Clotet A, Ricart MJ, Kresse G, Garcia-Hernandez M, Roesch N, Sautet P (2003) Surf Sci 530:71

    Article  CAS  Google Scholar 

  18. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  19. Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225

    Article  CAS  Google Scholar 

  20. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  Google Scholar 

  21. Staykov A, Kamachi T, Ishihara T, Yoshizawa K (2008) J Phys Chem C 112:19501

    Article  CAS  Google Scholar 

  22. Landolt-Boernstein (1976) Structure data of free polyatomic molecules, vol II/7., New SeriesSpringer, Berlin

    Google Scholar 

  23. Yue C, Lim KH (2009) Catal Lett 128:221

    Article  CAS  Google Scholar 

  24. Tarmyshov KB, Mvller-Plathe F (2007) J Chem Phys 126:074702

    Article  Google Scholar 

  25. Harcourt RD, Klapoetke TM, White PS (1998) Inorg Chim Acta 269:1

    Article  CAS  Google Scholar 

  26. Feng G, Huo CF, Deng CM, Huang L, Li YW, Wang JG, Jiao HJ (2009) J Mol Catal A: Chem 304:58

    Article  CAS  Google Scholar 

  27. Zheng T, Stacchiola D, Saldin DK, James J, Sholl DS, Tysoe WT (2005) Surf Sci 574:166

    Article  CAS  Google Scholar 

  28. Rajagopal S, Spatola AF (1997) Appl Catal A: Gen 152:69

    Article  CAS  Google Scholar 

  29. Cai S, Sohlberg K (2003) J Mol Catal A: Chem 193:157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the funding support by a grant from the National Natural Science Foundation of China (No. 20776127), the National Key Technology R&D Program (No. 2007BAI34B07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzhi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, S., Qian, C. & Chen, X. Comparative Theoretical Study of Adsorption and Dehydrogenation of Formic Acid, Hydrazine and Isopropanol on Pd(111) Surface. Catal Lett 141, 726–734 (2011). https://doi.org/10.1007/s10562-011-0553-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0553-y

Keywords

Navigation