Skip to main content
Log in

CeO2–WO3 Mixed Oxides for the Selective Catalytic Reduction of NO x by NH3 Over a Wide Temperature Range

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of cerium-tungsten oxide catalysts was prepared by the co-precipitation method and was evaluated for the selective catalytic reduction of NO x by ammonia (NH3-SCR) over a wide temperature range. These catalysts were characterized by BET, XRD, XPS and H2-TPR analyses. The experimental studies demonstrated that, among cerium-tungsten oxides, CeO2–WO3 with a Ce/W molar ratio of 3/2 exhibited the best activity toward NH3-SCR reactions, N2 selectivity and SO2 durability over a broad temperature range of 175–500 °C at a space velocity of 47,000 h−1. The strong interaction between Ce and W could be the main factor leading to the high activity of the CeO2–WO3 mixed oxide catalyst.

Graphical Abstract

A series of cerium-tungsten oxide catalysts was prepared by the co-precipitation method and was evaluated for the selective catalytic reduction of NO x by ammonia (NH3-SCR) over a wide temperature range. These catalysts were characterized by BET, XRD, XPS and H2-TPR analyses. The experimental studies demonstrated that, among cerium-tungsten oxides, CeO2–WO3 with a Ce/W molar ratio of 3/2 exhibited the best activity toward NH3-SCR reactions, N2 selectivity and SO2 durability over a broad temperature range of 175–500 °C at a space velocity of 47,000 h−1. The strong interaction between Ce and W could be the main factor leading to the high activity of the CeO2–WO3 mixed oxide catalyst.

a NO x conversion over pure CeO2, pure WO3 and CeO2–WO3 mixed oxides. b NO conversion as a function of time at 300 °C over CeO2/TiO2, CeO2–WO3/TiO2 and CeO2–WO3 catalyst in the presence of SO2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bosch H, Janssen F (1988) Catal Today 2:369

    Article  CAS  Google Scholar 

  2. Schneider H, Scharf U, Wokaun A, Baiker A (1994) J Catal 146:545

    Article  CAS  Google Scholar 

  3. Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B 18:1

    Article  CAS  Google Scholar 

  4. Dunn JP, Koppula PR, Stenger HG, Wachs IE (1998) Appl Catal B 19:103

    Article  CAS  Google Scholar 

  5. Liu FD, He H, Zhang CB (2008) Chem Commun 17:2043

    Article  Google Scholar 

  6. Xu WQ, Yu YB, Zhang CB, He H (2008) Catal Commun 9:1453

    Article  CAS  Google Scholar 

  7. Gao X, Jiang Y, Zhong Y, Luo ZY, Cen KF (2010) J Hazard Mater 174:734

    Article  CAS  Google Scholar 

  8. Shen YS, Zhu SM, Qiu T, Shen SB (2009) Catal Commun 11:20

    Article  CAS  Google Scholar 

  9. Si ZC, Weng D, Wu XD, Li J, Li G (2010) J Catal 271:43

    Article  CAS  Google Scholar 

  10. Qi GS, Yang RT (2004) J Phys Chem B 108:15738

    Article  CAS  Google Scholar 

  11. Long RQ, Yang RT (2000) Appl Catal B 27:87

    Article  CAS  Google Scholar 

  12. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) J Phys Chem B 107:162

    Google Scholar 

  13. Xu WQ, He H, Yu YB (2009) J Phys Chem C 113:4426

    Article  CAS  Google Scholar 

  14. Chen L, Li JH, Ge MF, Zhu RH (2010) Catal Today 153:77

    Article  CAS  Google Scholar 

  15. Chen L, Li JH, Ge MF (2010) Environ Sci Technol 44:9590

    Article  CAS  Google Scholar 

  16. Marrero-Lo′pez D, Canales-Va′zquez J, Zhou WZ, Irvine JTS, Nu′n˜ez P (2006) J Solution Chem 179:278

    Google Scholar 

  17. Mamede AS, Payen E, Grange P, Poncelet G, Ion A, Alifanti M, Pârvulescu VI (2004) J Catal 223:1

    Article  CAS  Google Scholar 

  18. Noronha FB, Fendley EC, Soares RR, Alvarez WE, Resasco DE (2001) Chem Eng J 82:21

    Article  CAS  Google Scholar 

  19. He H, Dai HX, Au CT (2004) Catal Today 90:245

    Article  CAS  Google Scholar 

  20. Baek Y, Yong K (2007) J Phys Chem C 111:1213

    Article  CAS  Google Scholar 

  21. Leftheriotis G, Papaefthimiou S, Yianoulis P, Siokou A (2001) Thin Solid Films 384:298

    Article  CAS  Google Scholar 

  22. Logie V, Maire G, Michel D, Vignes JL (1999) J Catal 188:90

    Article  CAS  Google Scholar 

  23. Chen L, Li JH, Ge MF (2009) J Phys Chem C 113:21177

    Article  CAS  Google Scholar 

  24. Wu ZB, Jin RB, Liu Y, Wang HQ (2008) Catal Commun 9:2217

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science fund of China (Grant NO. 51078203) and the National High-Tech Research and Development (863) Program of China (Grant No. 2010AA065001 and 2010AA065002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Li, J., Ablikim, W. et al. CeO2–WO3 Mixed Oxides for the Selective Catalytic Reduction of NO x by NH3 Over a Wide Temperature Range. Catal Lett 141, 1859–1864 (2011). https://doi.org/10.1007/s10562-011-0701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0701-4

Keywords

Navigation