Skip to main content
Log in

The Mechanism of Ethylene Epoxidation Catalysis

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Today ethylene oxide can be produced industrially with ~90 % selectivity through the epoxidation of ethylene over silver catalyst. The past decades there has been a substantial increase in the understanding of the molecular chemistry that leads to high selectivity catalysis. Especially the discovery of an oxometallacycle intermediate that produces ethylene epoxide in competition with acetaldehyde can be considered a major advancement. The state of the surface at reaction conditions causes different reaction paths to compete. At high oxygen coverage also a direct epoxidation channel opens. We will also review recent progress on the understanding of promotion and coverage dependent reactivity. The contributions in our understanding of this reaction from computational catalysis will be emphasized.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ethylene Oxide (EO) (Complete Report), A Global Strategic Business Report Global Industry Analysts Inc, 2011, pp. 346

  2. Christopher P, Linic S (2008) J Am Chem Soc 130:11264–11265

    Article  CAS  Google Scholar 

  3. Van Santen RA, Kuipers HPCE (1987) The mechanism of ethylene epoxidation. In: Pines H, Eley DD, Weisz PB (eds), Advances in Catalysis, Academic Press, New York, pp. 265–321

  4. SHELL, Ethylene oxide/ethylene glycol (EO/EG) processes, SHELL, 2010

  5. Zomerdijk JC, Hall MW (1981) Catal Rev 23:163–185

    Article  CAS  Google Scholar 

  6. Michaelides M-LBaA (2006) Exploring the catalytic activity of a noble metal: the Ag catalyzed ethylene epoxidation reaction, In: Rosei PGeWHF (ed) Physics of single molecules on crystal surfaces. Imperial College Press, London, pp. 389–424

  7. Linic S, Barteau MA (2003) J Catal 214:200–212

    Article  CAS  Google Scholar 

  8. Lefort ET (1935) Process for the production of ethylene oxide, Catalyse. Generalisee FR. DE. SA, United States

    Google Scholar 

  9. Voge HH, Adams CR (1967) Catalytic oxidation of olefins. In: Pines H, Eley DD, Weisz PB (eds) Advances in catalysis. Academic Press, New York, pp. 151–221

  10. Bulushev DA, Paukshtis EA, Nogin YN, Bal’zhinimaev BS (1995) Appl Catal. A 123:301–322

    CAS  Google Scholar 

  11. Goncharova SN, Paukshtis EA, Bal’zhinimaev BS (1995) Appl Catal. A 126:67–84

    CAS  Google Scholar 

  12. Tan SA, Grant RB, Lambert RM (1987) Appl Catal 31:159–177

    Article  CAS  Google Scholar 

  13. Kestenbaum H, Lange de Oliveira A, Schmidt W, Schüth F, Ehrfeld W, Gebauer K, Löwe H, Richter T, Lebiedz D, Untiedt I, Züchner H (2002) Ind Eng Chem Res 41:710–719

    Article  CAS  Google Scholar 

  14. Campbell CT (1984) J Vac Sci Technol. A 2:1024–1027

    CAS  Google Scholar 

  15. Kilty PA, Sachtler WMH (1974) Catal Rev Sci Eng 10:1–16

    Article  CAS  Google Scholar 

  16. Bryce-Smith D, BET, Griffe de Martinez B (1983) Chem Ind 18

  17. Park DM, Ghazali S, Gau G (1983) Appl Catal 6:175–193

    Article  CAS  Google Scholar 

  18. Force EL, Bell AT (1975) J Catal 38:440–460

    Article  CAS  Google Scholar 

  19. Force EL, Bell AT (1975) J Catal 40:356–371

    Article  CAS  Google Scholar 

  20. Force EL, Bell AT (1976) J Catal 44:175–182

    Article  CAS  Google Scholar 

  21. Grant RB, Lambert RM (1985) J Catal 92:364–375

    Article  CAS  Google Scholar 

  22. Grant RB, Lambert RM (1983) J Chem Soc, Chem Commun (12):662–663

  23. Grant RB, Lambert RM (1984) Surf Sci 146:256–268

    Article  CAS  Google Scholar 

  24. Campbell CT (1986) J Catal 99:28–38

    Article  CAS  Google Scholar 

  25. Campbell CT (1985) J Catal 94:436–444

    Article  CAS  Google Scholar 

  26. Campbell CT, Daube KA (1987) J Catal 106:301–306

    Article  CAS  Google Scholar 

  27. Campbell CT, Koel BE (1985) J Catal 92:272–283

    Article  CAS  Google Scholar 

  28. Rovida G, Pratesi F, Maglietta M, Ferroni E (1972) J Vac Sci Technol. A 9:796–799

    CAS  Google Scholar 

  29. Cant NW, Hall WK (1978) J Catal 52:81–94

    Article  CAS  Google Scholar 

  30. Barteau MA, Madix RJ (1980) Surf Sci 97:101–110

    Article  CAS  Google Scholar 

  31. Rovida G, Pratesi F, Ferroni E (1980) Appl Surf Sci 5:121–132

    Article  CAS  Google Scholar 

  32. Backx C, Moolhuysen J, Geenen P, van Santen RA (1981) J Catal 72:364–368

    Article  CAS  Google Scholar 

  33. Kitson M, Lambert RM (1981) Surf Sci 109:60–74

    Article  CAS  Google Scholar 

  34. Backx C, De Groot CPM, Biloen P (1981) Surf Sci 104:300–317

    Article  CAS  Google Scholar 

  35. Campbell CT, Paffett MT (1984) Surf Sci 143:517–535

    Article  CAS  Google Scholar 

  36. Akella LM, Lee HH (1984) J Catal 86:465–472

    Article  CAS  Google Scholar 

  37. Campbell CT, Paffett MT (1984) Appl Surf Sci 19:28–42

    Article  CAS  Google Scholar 

  38. Campbell CT, Paffett MT (1984) Surf Sci 139:396–416

    Article  CAS  Google Scholar 

  39. Campbell CT (1985) Surf Sci 157:43–60

    Article  CAS  Google Scholar 

  40. Grant RB, Lambert RM (1985) J Catal 93:92–99

    Article  CAS  Google Scholar 

  41. van Santen RA, de Groot CPM (1986) J Catal 98:530–539

    Article  Google Scholar 

  42. Tan SA, Grant RB, Lambert RM (1986) J Catal 100:383–391

    Article  CAS  Google Scholar 

  43. Grant RB, Harbach CAJ, Lambert RM, Tan SA (1987) J Chem Soc Faraday Trans 1(83):2035–2046

    Google Scholar 

  44. Tan SA, Grant RB, Lambert RM (1987) J Catal 106:54–64

    Article  CAS  Google Scholar 

  45. Carter EA, Goddard WA (1988) J Catal 112:80–92

    Article  CAS  Google Scholar 

  46. Dean M, Bowker M (1988) Appl Surf Sci 35:27–40

    Article  CAS  Google Scholar 

  47. Santen RAv (1988) The active site of promoted ethylene-epoxidation catalysts In: Phillips MJ, Ternan M, (eds) Catalysis: theory to practice, Proceedings of characterization and metal catalysts, Ottawa Canada, pp 1152–1158

  48. Van den Hoek PJ, Baerends EJ, Van Santen RA (1989) J Phys Chem 93:6469–6475

    Article  Google Scholar 

  49. Carter EA, Goddard WA III (1989) Surf Sci 209:243–289

    Article  CAS  Google Scholar 

  50. Su DS, Jacob T, Hansen TW, Wang D, Schlögl R, Freitag B, Kujawa S (2008) Angew Chem 120:5083–5086

    Article  Google Scholar 

  51. Grant RB, Lambert RM (1985) Langmuir 1:29–33

    Article  CAS  Google Scholar 

  52. van Santen RA (1997) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim

  53. Linic S, Barteau MA (2001) J Am Chem Soc 124:310–317

    Article  CAS  Google Scholar 

  54. Jones GS, Mavrikakis M, Barteau MA, Vohs JM (1998) J Am Chem Soc 120:3196–3204

    Article  CAS  Google Scholar 

  55. Wu G, Stacchiola D, Kaltchev M, Tysoe WT (2000) Surf Sci 463:81–92

    Article  CAS  Google Scholar 

  56. Linic S, Medlin JW, Barteau MA (2002) Langmuir 18:5197–5204

    Article  CAS  Google Scholar 

  57. Stacchiola D, Wu G, Kaltchev M, Tysoe WT (2001) Surf Sci 486:9–23

    Article  CAS  Google Scholar 

  58. Ozbek MO, Onal I, Santen RA (2012) Top Catal 55:710–717

    Article  CAS  Google Scholar 

  59. Lukaski A, Barteau M (2009) Catal Lett 128:9–17

    Article  CAS  Google Scholar 

  60. Torres D, Lopez N, Illas F, Lambert RM (2005) J Am Chem Soc 127:10774–10775

    Article  CAS  Google Scholar 

  61. Christopher P, Linic S (2010) ChemCatChem 2:78–83

    Article  CAS  Google Scholar 

  62. Kokalj A, Gava P, de Gironcoli S, Baroni S (2008) J Phys Chem C 112:1019–1027

    Article  CAS  Google Scholar 

  63. Linic S, Barteau MA (2003) J Am Chem Soc 125:4034–4035

    Article  CAS  Google Scholar 

  64. Linic S, Barteau MA (2008) Heterogeneous catalysis of alkene epoxidation. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim

  65. Medlin JW, Barteau MA (2001) J Phys Chem B 105:10054–10061

    Article  CAS  Google Scholar 

  66. Torres D, Lopez N, Illas F (2006) J Catal 243:404–409

    Article  CAS  Google Scholar 

  67. Mavrikakis M, Doren DJ, Barteau MA (1998) J Phys Chem B 102:394–399

    Article  CAS  Google Scholar 

  68. Nakatsuji H, Hu Z-M, Nakai H, Ikeda K (1997) Surf Sci 387:328–341

    Article  CAS  Google Scholar 

  69. Chen H-T, Chang J-G, Ju S-P, Chen H-L (2010) J Phys Chem Lett 1:739–742

    Article  CAS  Google Scholar 

  70. Torres D, Illas F (2006) J Phys Chem B 110:13310–13313

    Article  CAS  Google Scholar 

  71. Özbek MO, Önal I, van Santen RA (2011) ChemCatChem 3:150–153

    Article  CAS  Google Scholar 

  72. Ozbek MO, Onal I, van Santen RA (2011) J Catal 284:230–235

    Article  CAS  Google Scholar 

  73. Ozbek MO, Onal I, Santen RAV (2011) J Phys Condens Matter 23:404202

    Article  CAS  Google Scholar 

  74. Ozbek MO, Onal I, Santen RAv (2012) ChemCatChem. doi:10.1002/cctc.201200690

  75. Bocquet ML, Michaelides A, Sautet P, King DA (2003) Phys Rev B 68:075413

    Article  CAS  Google Scholar 

  76. Bocquet M-L, Loffreda D (2005) J Am Chem Soc 127:17207–17215

    Article  CAS  Google Scholar 

  77. Schnadt J, Michaelides A, Knudsen J, Vang RT, Reuter K, Laegsgaard E, Scheffler M, Besenbacher F (2006) Phys Rev Lett 96:146101

    Article  CAS  Google Scholar 

  78. Mars P, van Krevelen DW (1954) Chem Eng Sci 3:41–59

    Article  CAS  Google Scholar 

  79. Larrabee AL, Kuczkowski RL (1978) J Catal 52:72–80

    Article  CAS  Google Scholar 

  80. Frondelius P, Häkkinen H, Honkala K (2010) Angew Chem Int Ed 49:7913–7916

    Article  CAS  Google Scholar 

  81. Klugherz PD, Harriott P (1971) AIChE J 17:856–866

    Article  CAS  Google Scholar 

  82. Richey WF (1972) J Phys Chem 76:213–216

    Article  CAS  Google Scholar 

  83. Cusumano JA (1976) Olefin oxidation process. In: U.S. Patent (ed) Exxon Research and Engineering Company, 1976

  84. Atkins M, Couves J, Hague M, Sakakini BH, Waugh KC (2005) J Catal 235:103–113

    Article  CAS  Google Scholar 

  85. Bowker M, Waugh KC (1983) Surf Sci 134:639–664

    Article  CAS  Google Scholar 

  86. Nagy AJ, Mestl G, Herein D, Weinberg G, Kitzelmann E, Schlögl R (1999) J Catal 182:417–429

    Article  CAS  Google Scholar 

  87. Savinova ER, Zemlyanov D, Pettinger B, Scheybal A, Schlögl R, Doblhofer K (2000) Electrochim Acta 46:175–183

    Article  CAS  Google Scholar 

  88. Saravanan C, Salazar MR, Kress JD, Redondo A (2000) J Phys Chem B 104:8685–8691

    Article  CAS  Google Scholar 

  89. Li W-X, Stampfl C, Scheffler M (2003) Phys Rev B 67:045408

    Article  CAS  Google Scholar 

  90. Michaelides A, Reuter K, Scheffler M (2005) J Vac Sci Technol. A 23:1487–1497

    CAS  Google Scholar 

  91. Torres D, Illas F, Lambert RM (2008) J Catal 260:380–383

    Article  CAS  Google Scholar 

  92. Wang C-B, Deo G, Wachs IE (1999) J Phys Chem B 103:5645–5656

    Article  CAS  Google Scholar 

  93. Macleod N, Keel JM, Lambert RM (2003) Catal Lett 86:51–56

    Article  CAS  Google Scholar 

  94. Jung K-H, Chung K-H, Kim M-Y, Kim J-H, Seo G (1999) Korean J Chem Eng 16:396–400

    Article  CAS  Google Scholar 

  95. Mao C-F, Albert Vannice M (1995) Appl Catal. A 122:61–76

    CAS  Google Scholar 

  96. Campbell CT (1985) J Phys Chem 89:5789–5795

    Article  CAS  Google Scholar 

  97. Kapran A, Orlik S (2005) Theor Exp Chem 41:377–381

    Article  CAS  Google Scholar 

  98. Ayame A, Uchida Y, Ono H, Miyamoto M, Sato T, Hayasaka H (2003) Appl Catal. A 244:59–70

    CAS  Google Scholar 

  99. Amorim de Carvalho MCN, Passos FB, Schmal M (2007) J Catal 248:124–129

    Google Scholar 

  100. Bukhtiyarov VI, Prosvirin IP, Kvon RI, Bal’zhinimaev BS, Podgornov EA (1997) Appl Surf Sci 115:135–143

    Article  CAS  Google Scholar 

  101. Wang J, Ellis PD (1991) J Am Chem Soc 113:9675–9676

    Article  CAS  Google Scholar 

  102. Linic S, Barteau MA (2004) J Am Chem Soc 126:8086–8087

    Article  CAS  Google Scholar 

  103. Santen RAv (1988) Catalysis: theory to practice; Characterization and metal catalysts, Ottawa, Canada. Proceedings 3:7.

  104. Bukhtiyarov VI, Hävecker M, Kaichev VV, Knop-Gericke A, Mayer RW, Schlögl R (2001) Catal Lett 74:121–125

    Article  CAS  Google Scholar 

  105. Bukhtiyarov VI, Hävecker M, Kaichev VV, Knop-Gericke A, Mayer RW, Schlögl R (2003) Phys Rev B 67:235422

    Article  CAS  Google Scholar 

  106. Kaichev VV, Bukhtiyarov VI, Hävecker M, Knop-Gercke A, Mayer RW, Schlögl R (2003) Kinet Catal 44:432–440

    Article  CAS  Google Scholar 

  107. Bukhtiyarov VI, Boronin AI, Savchenko VI (1990) Surf Sci 232:L205–L209

    Article  CAS  Google Scholar 

  108. Bal’zhinimaev BS, Sadovskaya EM, Suknev AP (2009) Chem Eng J (Lausanne) 154:2–8

    Google Scholar 

  109. Xu Y, Greeley J, Mavrikakis M (2005) J Am Chem Soc 127:12823–12827

    Article  CAS  Google Scholar 

  110. Li W-X, Stampfl C, Scheffler M (2002) Phys Rev B 65:075407

    Article  CAS  Google Scholar 

  111. Schmid M, Reicho A, Stierle A, Costina I, Klikovits J, Kostelnik P, Dubay O, Kresse G, Gustafson J, Lundgren E, Andersen JN, Dosch H, Varga P (2006) Phys Rev Lett 96:146102

    Article  CAS  Google Scholar 

  112. Gajdos M, Eichler A, Hafner J (2003) Surf Sci 531:272–286

    Article  CAS  Google Scholar 

  113. Buatier de Mongeot F, Cupolillo A, Rocca M, Valbusa U (1999) Chem Phys Lett 302:302–306

    Google Scholar 

  114. Goddard PJ, Lambert RM (1981) Surf Sci 107:519–532

    Article  CAS  Google Scholar 

  115. Michaelides A, Bocquet ML, Sautet P, Alavi A, King DA (2003) Chem Phys Lett 367:344–350

    Article  CAS  Google Scholar 

  116. Reuter K, Scheffler M (2001) Phys Rev B 65:035406

    Article  CAS  Google Scholar 

  117. Reuter K, Scheffler M (2004) Appl Phys A 78:793–798

    Article  CAS  Google Scholar 

  118. Bocquet M-L, Michaelides A, Loffreda D, Sautet P, Alavi A, King DA (2003) J Am Chem Soc 125:5620–5621

    Article  CAS  Google Scholar 

  119. Bocquet M-L, Sautet P, Cerda J, Carlisle CI, Webb MJ, King DA (2003) J Am Chem Soc 125:3119–3125

    Article  CAS  Google Scholar 

  120. Carlisle CI, King DA, Bocquet ML, Cerd J, Sautet P (2000) Phys Rev Lett 84:3899

    Google Scholar 

  121. Schnadt J, Knudsen J, Hu XL, Michaelides A, Vang RT, Reuter K, Li Z, Laegsgaard E, Scheffler M, Besenbacher F (2009) Phys Rev B 80:075424

    Article  CAS  Google Scholar 

  122. Gao W, Zhao M, Jiang Q (2007) J Phys Chem C 111:4042–4046

    Article  CAS  Google Scholar 

  123. Carlisle CI, Fujimoto T, Sim WS, King DA (2000) Surf Sci 470:15–31

    Article  CAS  Google Scholar 

  124. Bare SR, Griffiths K, Lennard WN, Tang HT (1995) Surf Sci 342:185–198

    Article  CAS  Google Scholar 

  125. Li W-X, Stampfl C, Scheffler M (2003) Phys Rev B 68:165412

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. van Santen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özbek, M.O., van Santen, R.A. The Mechanism of Ethylene Epoxidation Catalysis. Catal Lett 143, 131–141 (2013). https://doi.org/10.1007/s10562-012-0957-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0957-3

Keywords

Navigation