Skip to main content
Log in

Theoretical Insights into the Effect of the Framework on the Initiation Mechanism of the MTO Process

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this contribution, we investigate the initiation mechanism of the methanol-to-olefins process for the different zeotype materials, H-SSZ-13, H-ZSM-5, H-BEA and H-SAPO-34 using density functional theory. While the energetics differ between these materials, variations are systematic so that the relative ordering of the barriers remains the same. We hence predict that the initiation mechanism follows an identical path in all materials with similar rate-limiting steps. We show that the observed trends that have been found for the reaction barriers can be explained by differences in acidity and van-der-Waals interactions of the materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Olah GA (2013) Angew Chem Int Ed Engl 52:104–107

    Article  CAS  Google Scholar 

  2. Olah GA (2005) Angew Chem Int Ed Engl 44:2636–2639

    Article  CAS  Google Scholar 

  3. Hemelsoet K, Van der Mynsbrugge J, De Wispelaere K, Waroquier M, Van Speybroeck V (2013) ChemPhysChem 14:1526–1545

    Article  CAS  Google Scholar 

  4. Olsbye U, Svelle S, Bjorgen M, Beato P, Janssens TV, Joensen F, Bordiga S, Lillerud KP (2012) Angew Chem Int Ed Engl 51:5810–5831

    Article  CAS  Google Scholar 

  5. Stöcker M (1999) Microporous Mesoporous Mater 29:3–48

    Article  Google Scholar 

  6. Olsbye U, Svelle S, Lillerud KP, Wei ZH, Chen YY, Li JF, Wang JG, Fan WB (2015) Chem Soc Rev 44:7155–7176

    Article  CAS  Google Scholar 

  7. Tian P, Wei Y, Ye M, Liu Z (2015) ACS Catal 5:1922–1938

    Article  CAS  Google Scholar 

  8. Tajima N, Tsuneda T, Toyama F, Hirao K (1998) J Am Chem Soc 120:8222–8229

    Article  CAS  Google Scholar 

  9. Salehirad A (1996) J Catal 164:301–314

    Article  CAS  Google Scholar 

  10. Li JF, Wei ZH, Chen YY, Jing BQ, He Y, Dong M, Jiao HJ, Li XK, Qin ZF, Wang JG, Fan WB (2014) J Catal 317:277–283

    Article  CAS  Google Scholar 

  11. Liu Y, Muller S, Berger D, Jelic J, Reuter K, Tonigold M, Sanchez-Sanchez M, Lercher JA (2016) Angew Chem Int Ed Engl 55:5723–5726

    Article  CAS  Google Scholar 

  12. Chen XY, Neidig ML, Tuinstra R, Malek A (2010) J Phys Chem Lett 1:3012–3015

    Article  CAS  Google Scholar 

  13. Chowdhury AD, Houben K, Whiting GT, Mokhtar M, Asiri AM, Al-Thabaiti SA, Basahel SN, Baldus M, Weckhuysen BM (2016) Angew Chem Int Ed Engl 55:15840–15845

    Article  CAS  Google Scholar 

  14. Lesthaeghe D, Van Speybroeck V, Marin GB, Waroquier M (2006) Angew Chem Int Ed Engl 45:1714–1719

    Article  CAS  Google Scholar 

  15. Lesthaeghe D, Van Speybroeck V, Marin GB, Waroquier M (2006) Chem Phys Lett 417:309–315

    Article  CAS  Google Scholar 

  16. Sinclair PE, Catlow CRA (1997) J Phys Chem B 101:295–298

    Article  CAS  Google Scholar 

  17. Yamazaki H, Shima H, Imai H, Yokoi T, Tatsumi T, Kondo JN (2011) Angew Chem Int Ed Engl 50:1853–1856

    Article  CAS  Google Scholar 

  18. Blaszkowski SR, vanSanten RA (1997) J Am Chem Soc 119:5020–5027

    Article  CAS  Google Scholar 

  19. Comas-Vives A, Valla M, Coperet C, Sautet P (2015) ACS Cent Sci 1:313–319

    Article  CAS  Google Scholar 

  20. Song W, Marcus DM, Fu H, Ehresmann JO, Haw JF (2002) J Am Chem Soc 124:3844–3845

    Article  CAS  Google Scholar 

  21. Wang W, Buchholz A, Seiler M, Hunger M (2003) J Am Chem Soc 125:15260–15267

    Article  CAS  Google Scholar 

  22. Wu X, Xu S, Zhang W, Huang J, Li J, Yu B, Wei Y, Liu Z (2017) Angew Chem Int Ed Engl 56:9039–9043

    Article  CAS  Google Scholar 

  23. Plessow PN, Studt F (2017) ACS Catal 7:7987–7994

    Article  CAS  Google Scholar 

  24. Jiang Y, Wang W, Reddymarthala V, Huang J, Sulikowski B, Hunger M (2006) J Catal 238:21–27

    Article  CAS  Google Scholar 

  25. Wang W, Jiang Y, Hunger M (2006) Catal Today 113:102–114

    Article  CAS  Google Scholar 

  26. Hansen N, Kerber T, Sauer J, Bell AT, Keil FJ (2010) J Am Chem Soc 132:11525–11538

    Article  CAS  Google Scholar 

  27. Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2009) J Am Chem Soc 131:816–825

    Article  CAS  Google Scholar 

  28. Gomes J, Zimmerman PM, Head-Gordon M, Bell AT (2012) J Phys Chem C 116:15406–15414

    Article  CAS  Google Scholar 

  29. Kumar P, Thybaut JW, Svelle S, Olsbye U, Marin GB (2013) Ind Eng Chem Res 52:1491–1507

    Article  CAS  Google Scholar 

  30. Janssens TVW, Svelle S, Olsbye U (2013) J Catal 308:122–130

    Article  CAS  Google Scholar 

  31. Kumar P, Thybaut JW, Teketel S, Svelle S, Beato P, Olsbye U, Marin GB (2013) Catal Today 215:224–232

    Article  CAS  Google Scholar 

  32. Pérez-Uriarte P, Ateka A, Aguayo AT, Gayubo AG, Bilbao J (2016) Chem Eng J 302:801–810

    Article  CAS  Google Scholar 

  33. Blaszkowski SR, vanSanten RA (1996) J Am Chem Soc 118:5152–5153

    Article  CAS  Google Scholar 

  34. Jones AJ, Iglesia E (2014) Angew Chem Int Ed Engl 53:12177–12181

    Article  CAS  Google Scholar 

  35. Carr RT, Neurock M, Iglesia E (2011) J Catal 278:78–93

    Article  CAS  Google Scholar 

  36. Brogaard RY, Henry R, Schuurman Y, Medford AJ, Moses PG, Beato P, Svelle S, Nørskov JK, Olsbye U (2014) J Catal 314:159–169

    Article  CAS  Google Scholar 

  37. Boronat M, Martinez C, Corma A (2011) Phys Chem Chem Phys 13:2603–2612

    Article  CAS  Google Scholar 

  38. Martinez-Espin JS, Mortén M, Janssens TVW, Svelle S, Beato P, Olsbye U (2017) Catal Sci Technol 7:2700–2716

    Article  CAS  Google Scholar 

  39. Celik FE, Kim T, Mlinar AN, Bell AT (2010) J Catal 274:150–162

    Article  CAS  Google Scholar 

  40. Rasmussen DB, Christensen JM, Temel B, Studt F, Moses PG, Rossmeisl J, Riisager A, Jensen AD (2015) Angew Chem Int Ed Engl 54:7261–7264

    Article  CAS  Google Scholar 

  41. Rasmussen DB, Christensen JM, Temel B, Studt F, Moses PG, Rossmeisl J, Riisager A, Jensen AD (2017) Catal Sci Technol 7:1141–1152

    Article  CAS  Google Scholar 

  42. Boronat M, Martinez-Sanchez C, Law D, Corma A (2008) J Am Chem Soc 130:16316–16323

    Article  CAS  Google Scholar 

  43. Cheung P, Bhan A, Sunley GJ, Iglesia E (2006) Angew Chem Int Ed Engl 45:1617–1620

    Article  CAS  Google Scholar 

  44. Bhan A, Allian AD, Sunley GJ, Law DJ, Iglesia E (2007) J Am Chem Soc 129:4919–4924

    Article  CAS  Google Scholar 

  45. He T, Ren P, Liu X, Xu S, Han X, Bao X (2015) Chem Commun (Camb) 51:16868–16870

    Article  CAS  Google Scholar 

  46. Michels N-L, Mitchell S, Pérez-Ramírez J (2014) ACS Catal 4:2409–2417

    Article  CAS  Google Scholar 

  47. Wang CM, Wang YD, Xie ZK (2016) Catal Sci Technol 6:6644–6649

    Article  CAS  Google Scholar 

  48. Zhu Q, Kondo JN, Ohnuma R, Kubota Y, Yamaguchi M, Tatsumi T (2008) Microporous Mesoporous Mater 112:153–161

    Article  CAS  Google Scholar 

  49. Hemelsoet K, Nollet A, Vandichel M, Lesthaeghe D, Van Speybroeck V, Waroquier M (2009) ChemCatChem 1:373–378

    Article  CAS  Google Scholar 

  50. Yuen L-T, Zones S, Harris T, Gallegos E, Auroux A (1994) Microporous Mater 2:105–117

    Article  CAS  Google Scholar 

  51. Park JW, Lee JY, Kim KS, Hong SB, Seo G (2008) Appl Catal A 339:36–44

    Article  CAS  Google Scholar 

  52. Wang CM, Wang YD, Du YJ, Yang G, Xie ZK (2015) Catal Sci Technol 5:4354–4364

    Article  CAS  Google Scholar 

  53. Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud KP, Kolboe S, Bjorgen M (2006) J Am Chem Soc 128:14770–14771

    Article  CAS  Google Scholar 

  54. Bjorgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) J Catal 249:195–207

    Article  CAS  Google Scholar 

  55. Bjorgen M, Joensen F, Lillerud KP, Olsbye U, Svelle S (2009) Catal Today 142:90–97

    Article  CAS  Google Scholar 

  56. Lesthaeghe D, Van der Mynsbrugge J, Vandichel M, Waroquier M, Van Speybroeck V (2011) ChemCatChem 3:208–212

    Article  CAS  Google Scholar 

  57. Wei Z, Chen Y-Y, Li J, Guo W, Wang S, Dong M, Qin Z, Wang J, Jiao H, Fan W (2016) J Phys Chem C 120:6075–6087

    Article  CAS  Google Scholar 

  58. Müller S, Liu Y, Vishnuvarthan M, Sun X, van Veen AC, Haller GL, Sanchez-Sanchez M, Lercher JA (2015) J Catal 325:48–59

    Article  CAS  Google Scholar 

  59. Hutchings GJ, Gottschalk F, Hall MVM, Hunter R (1987) J Chem Soc Faraday Trans 83:571–583

    Article  CAS  Google Scholar 

  60. Luzgin MV, Stepanov AG, Arzumanov SS, Rogov VA, Parmon VN, Wang W, Hunger M, Freude D (2005) Chemistry 12:457–465

    Article  CAS  Google Scholar 

  61. Ghorbanpour A, Rimer JD, Grabow LC (2014) Catal Commun 52:98–102

    Article  CAS  Google Scholar 

  62. Muller S, Liu Y, Kirchberger FM, Tonigold M, Sanchez-Sanchez M, Lercher JA (2016) J Am Chem Soc 138:15994–16003

    Article  CAS  Google Scholar 

  63. Almutairi SMT, Mezari B, Pidko EA, Magusin PCMM., Hensen EJM (2013) J Catal 307:194–203

    Article  CAS  Google Scholar 

  64. Wang S, Chen Y, Wei Z, Qin Z, Ma H, Dong M, Li J, Fan W, Wang J (2015) J Phys Chem C 119:28482–28498

    Article  CAS  Google Scholar 

  65. Sassi A, Wildman MA, Ahn HJ, Prasad P, Nicholas JB, Haw JF (2002) J Phys Chem B 106:2294–2303

    Article  CAS  Google Scholar 

  66. Sassi A, Wildman MA, Haw JF (2002) J Phys Chem B 106:8768–8773

    Article  CAS  Google Scholar 

  67. Zhao X, Wang L, Li J, Xu S, Zhang W, Wei Y, Guo X, Tian P, Liu Z (2017) Catal Sci Technol 7:5882–5892

    Article  CAS  Google Scholar 

  68. Dahl IM, Kolboe S (1993) Catal Lett 20:329–336

    Article  CAS  Google Scholar 

  69. Dahl IM, Mostad H, Akporiaye D, Wendelbo R (1999) Microporous Mesoporous Mater 29:185–190

    Article  CAS  Google Scholar 

  70. Wang C-M, Wang Y-D, Xie Z-K (2013) J Catal 301:8–19

    Article  CAS  Google Scholar 

  71. Dahl IM, Kolboe S (1996) J Catal 161:304–309

    Article  CAS  Google Scholar 

  72. Qian QY, Vogt C, Mokhtar M, Asiri AM, Al-Thabaiti SA, Basahel SN, Ruiz-Martinez J, Weckhuysen BM (2014) ChemCatChem 6:3396–3408

    Article  CAS  Google Scholar 

  73. Dahl IM, Kolboe S (1994) J Catal 149:458–464

    Article  CAS  Google Scholar 

  74. Wei Z, Chen Y-Y, Li J, Wang P, Jing B, He Y, Dong M, Jiao H, Qin Z, Wang J, Fan W (2016) Catal Sci Technol 6:5526–5533

    Article  CAS  Google Scholar 

  75. Hwang A, Prieto-Centurion D, Bhan A (2016) J Catal 337:52–56

    Article  CAS  Google Scholar 

  76. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396–1396

    Article  CAS  Google Scholar 

  77. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  CAS  Google Scholar 

  78. Wellendorff J, Lundgaard KT, Mogelhoj A, Petzold V, Landis DD, Nørskov JK, Bligaard T, Jacobsen KW (2012) Physical Review B 85:235149

    Article  CAS  Google Scholar 

  79. Brogaard RY, Wang C-M, Studt F (2014) ACS Catal 4:4504–4509

    Article  CAS  Google Scholar 

  80. Wang CM, Brogaard RY, Weckhuysen BM, Norskov JK, Studt F (2014) J Phys Chem Lett 5:1516–1521

    Article  CAS  Google Scholar 

  81. Liu C, Tranca I, van Santen RA, Hensen EJM, Pidko EA (2017) J Phys Chem C Nanomater Interfaces 121:23520–23530

    Article  CAS  Google Scholar 

  82. Chu Y, Han B, Fang H, Zheng A, Deng F (2012) Microporous Mesoporous Mater 151:241–249

    Article  CAS  Google Scholar 

  83. Vansanten RA, Kramer GJ (1995) Chem Rev 95:637–660

    Article  CAS  Google Scholar 

  84. Macht J, Carr RT, Iglesia E (2009) J Am Chem Soc 131:6554–6565

    Article  CAS  Google Scholar 

  85. Brogaard RY, Moses PG, Nørskov JK (2012) Catal Lett 142:1057–1060

    Article  CAS  Google Scholar 

  86. Chen Y-Y, Wei Z, Wang S, Li J, Dong M, Qin Z, Wang J, Jiao H, Fan W (2016) Catal Sci Technol 6:5326–5335

    Article  CAS  Google Scholar 

  87. Ocakoglu RA, Denayer JFM, Marin GB, Martens JA, Baron GV (2003) J Phys Chem B 107:398–406

    Article  CAS  Google Scholar 

  88. Denayer JF, Baron GV, Martens JA, Jacobs PA (1998) J Phys Chem B 102:3077–3081

    Article  CAS  Google Scholar 

  89. Göltl F, Gruneis A, Bucko T, Hafner J (2012) J Chem Phys 137:114111

    Article  CAS  Google Scholar 

  90. Göltl F, Sautet P (2014) J Chem Phys 140:154105

    Article  CAS  Google Scholar 

  91. Göltl F, Hafner J (2013) Microporous Mesoporous Mater 166:176–184

    Article  CAS  Google Scholar 

  92. Jiang T, Göltl F, Bulo RE, Sautet P (2014) ACS Catal 4:2351–2358

    Article  CAS  Google Scholar 

  93. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  94. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  95. Plessow PN (2018) J Chem Theory Comput 14:981–990

    Article  CAS  Google Scholar 

  96. Bleken F, Bjorgen M, Palumbo L, Bordiga S, Svelle S, Lillerud KP, Olsbye U (2009) Top Catal 52:218–228

    Article  CAS  Google Scholar 

  97. Jones AJ, Carr RT, Zones SI, Iglesia E (2014) J Catal 312:58–68

    Article  CAS  Google Scholar 

  98. Sklenak S, Dedecek J, Li C, Wichterlova B, Gabova V, Sierka M, Sauer J (2009) Phys Chem Chem Phys 11:1237–1247

    Article  CAS  Google Scholar 

  99. Nguyen CM, Reyniers MF, Marin GB (2010) Phys Chem Chem Phys 12:9481–9493

    Article  CAS  Google Scholar 

  100. Van der Mynsbrugge J, Hemelsoet K, Vandichel M, Waroquier M, Van Speybroeck V (2012) J Phys Chem C 116:5499–5508

    Article  CAS  Google Scholar 

  101. Dědeček J, Sobalík Z, Wichterlová B (2012) Catal Rev 54:135–223

    Article  CAS  Google Scholar 

  102. Ghorbanpour A, Rimer JD, Grabow LC (2016) ACS Catal 6:2287–2298

    Article  CAS  Google Scholar 

  103. Goncalves TJ, Arnold U, Plessow PN, Studt F (2017) ACS Catal 7:3615–3621

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the state of Baden-Württemberg through bwHPC (bwunicluster and JUSTUS, RV bw17D011). Financial support from the Helmholtz Association is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp N. Plessow.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 728 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plessow, P.N., Studt, F. Theoretical Insights into the Effect of the Framework on the Initiation Mechanism of the MTO Process. Catal Lett 148, 1246–1253 (2018). https://doi.org/10.1007/s10562-018-2330-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2330-7

Keywords

Navigation