Skip to main content
Log in

A Remarkable Effect of Aluminum on the Novel and Efficient Aqueous-Phase Hydrogenation of Levulinic Acid into γ-Valerolactone Using Water-Soluble Platinum Catalysts Modified with Nitrogen-Containing Ligands

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic performance of novel water-soluble platinum catalysts modified with various nitrogen-containing and phosphine ligands in the hydrogenation reaction of levulinic acid (LA) into γ-valerolactone (GVL) has been studied in environmentally attractive, green, aqueous monophasic systems. The presence of the Lewis acid aluminum enormously increases the catalytic activity of water-soluble platinum catalysts modified with nitrogen-containing ligands in the LA hydrogenation reaction and high catalytic activities up to 3540 TOF’s per hour with a quantitative selectivity towards GVL have been achieved using Na2PtCl6·6H2O precursors modified with the bidentate bathophenanthrolinedisulfonic acid disodium salt (BPhDS) ligand and low amounts of AlCl3·6H2O promotors (molar ratio of AlCl3·6H2O/Pt = 0.17) in aqueous media. This unprecedented increase in catalytic activity with aluminum promotors for water-soluble transition metal catalytic systems in aqueous-phase hydrogenation reactions has not been described until now in the literature. The apparent activation energy of platinum catalyst modified with the monodentate nitrilotriacetic acid trisodium salt ligand in aqueous medium was calculated and amounts to a relative low value of 73.04 kJ mol−1 when one considers that in the LA hydrogenation reaction this catalyst reduces a less reactive keto group into alcohol functionality. A recycling experiment of the Pt/BPhDS/Al catalyst from the aqueous monophasic LA hydrogenation reaction mixture followed by biphasic recovery of the catalyst in active form from organic reaction products by extraction and simple phase separation of an aqueous/organic two-phase system formed after addition of diethyl ether has shown that the Pt/BPhDS/Al catalyst is stable without loss of activity and selectivity in a consecutive run.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2

Similar content being viewed by others

References

  1. Papadogianakis G, Sheldon RA (1997) Catalysis, specialist periodical reports, vol 13. Royal Society of Chemistry, London, p 114

    Google Scholar 

  2. Papadogianakis G, Sheldon RA (1996) New J Chem 20:175

    CAS  Google Scholar 

  3. Shaughnessy KH (2009) Chem Rev 109:643

    Article  CAS  PubMed  Google Scholar 

  4. de Cienfuegos LA, Robles R, Miguel D, Justicia J, Cuerva JM (2011) ChemSusChem 4:1035

    Article  CAS  PubMed  Google Scholar 

  5. Papadogianakis G, Sheldon RA (2015) Catal Today 247:1

    Article  CAS  Google Scholar 

  6. Clark JH, Luque R, Matharu AS (2012) Annu Rev Chem Biomol Eng 3:183

    Article  CAS  PubMed  Google Scholar 

  7. Lanzafame P, Centi G, Perathoner S (2014) Catal Today 234:2

    Article  CAS  Google Scholar 

  8. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  PubMed  Google Scholar 

  9. Corma S, Iborra A, Velty (2007) Chem Rev 107:2411

    Article  CAS  PubMed  Google Scholar 

  10. Climent MJ, Corma A, Iborra S (2014) Green Chem 16:516

    Article  CAS  Google Scholar 

  11. Serrano-Ruiz JC, Luque R, Sepúlveda-Escribano A (2011) Chem Soc Rev 40:5266

    Article  CAS  PubMed  Google Scholar 

  12. Leitner W, Klankermayer J, Pischinger S, Pitsch H (2017) K. Kohse-Höinghaus. Angew Chem Int Ed 56:5412

    Article  CAS  Google Scholar 

  13. van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Chem Rev 113:1499

    Article  CAS  PubMed  Google Scholar 

  14. Lange J-P (2016) Catal Sci Technol 6:4759

    Article  CAS  Google Scholar 

  15. Bozell JJ (2010) Science 329:522

    Article  CAS  PubMed  Google Scholar 

  16. de Vries JG (2016) Chem Rec 16:2787

    Article  CAS  Google Scholar 

  17. Home page of GFBiochemicals company. http://www.gfbiochemicals.com/company/. Accessed Jan 2019

  18. Filiz BC, Gnanakumar ES, Martínez-Arias A, Gengler R, Rudolf P, Rothenberg G, Shiju NR (2017) Catal Lett 147:1744

    Article  CAS  Google Scholar 

  19. Yan K, Yang Y, Chai J, Lu Y (2015) Appl Catal B 179:292

    Article  CAS  Google Scholar 

  20. Pileidis FD, Titirici M-M (2016) ChemSusChem 9:562

    Article  CAS  PubMed  Google Scholar 

  21. Osatiashtiani AF, Lee K, Wilson (2017) J Chem Technol Biotechnol 92:1125

    Article  CAS  Google Scholar 

  22. Piskun AS, van de Bovenkamp HH, Rasrendra CB, Winkelman JGM, Heeres HJ (2016) Appl Catal A 525:158

    Article  CAS  Google Scholar 

  23. Yan K, Lafleur T, Wu X, Chai J, Wu G, Xie X (2015) Chem Commun 51:6984

    Article  CAS  Google Scholar 

  24. Zhong H, Li Q, Liu J, Yao G, Wang J, Zeng X, Huo Z, Jin F (2017) ACS Sustain Chem Eng 5:6517

    Article  CAS  Google Scholar 

  25. Albani D, Li Q, Vilé G, Mitchell S, Almora-Barrios N, Witte PT, López N, Pérez-Ramírez J (2017) Green Chem 19:2361

    Article  CAS  Google Scholar 

  26. Ortiz-Cervantes C, Garćia JJ (2013) Inorg Chim Acta 397:124

    Article  CAS  Google Scholar 

  27. Patil NM, Bhanage BM (2016) ChemCatChem 8:3458

    Article  CAS  Google Scholar 

  28. Omoruyi U, Page S, Hallet J, Miller PhW (2016) ChemSusChem 9:2037

    Article  CAS  PubMed  Google Scholar 

  29. Ortiz-Cervantes C, Flores-Alamo M, Garćia JJ (2015) ACS Catal 5:1424

    Article  CAS  Google Scholar 

  30. Gao H, Chen J (2015) J Organomet Chem 797:165

    Article  CAS  Google Scholar 

  31. Phanopoulos AJP, White NJ, Long PhW, Miller (2015) ACS Catal 5:2500

    Article  CAS  Google Scholar 

  32. Tukacs JM, Novák M, Dibó G, Mika LT (2014) Catal Sci Technol 4:2908

    Article  CAS  Google Scholar 

  33. Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Angew Chem Int Ed 49:5510

    Article  CAS  Google Scholar 

  34. Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) Green Chem 10:238

    Article  Google Scholar 

  35. Alonso DM, Hakim SH, Zhou S, Won W, Hosseinaei O, Tao J, Garcia-Negron V, Motagamwala AH, Mellmer MA, Huang K, Houtman CJ, Labbé N, Harper DP, Runge T, Dumesic CH, Maravelias JA (2017) Sci Adv 3:e1603301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Joó F, Tóth Z, Beck MT (1977) Inorg Chim Acta 25:L61

    Article  Google Scholar 

  37. Mehdi H, Fábos V, Tuba R, Bodor A, Mika LT, Horváth IT (2008) Top Catal 48:49

    Article  CAS  Google Scholar 

  38. Mika LT, Cséfalvay E, Horváth IT (2015) Catal Today 247:33

    Article  CAS  Google Scholar 

  39. Chalid M, Broekhuis AA, Heeres HJ (2011) J Mol Catal A 341:14

    Article  CAS  Google Scholar 

  40. Chalid M, Heeres HJ, Broekhuis AA (2012) Procedia Chem 4:260

    Article  CAS  Google Scholar 

  41. Delhomme C, Schaper L-A, Zhang-Preße M, Raudaschl-Sieber G, Weuster-Botz D, Kühn FE (2013) J Organomet Chem 724:297

    Article  CAS  Google Scholar 

  42. Deng J, Wang Y, Pan T, Xu Q, Guo Q-X, Fu Y (2013) ChemSusChem 6:1163

    Article  CAS  PubMed  Google Scholar 

  43. Wu W-P, Xu Y-J, Chang S-W, Deng J, Fu Y (2016) ChemCatChem 8:3375

    Article  CAS  Google Scholar 

  44. Moustani Ch, Anagnostopoulou E, Krommyda K, Panopoulou Ch, Koukoulakis KG, Bakeas EB, Papadogianakis G (2018) Appl Catal B 238:82

    Article  CAS  Google Scholar 

  45. Kuntz E, FR 2 314 910 (20.06.1975); DE 26 27 354 A1 (18.06.1976) and US 4 248 802 (03.02.1981) to Rhone-Poulenc Industries

  46. Kuntz EG (1987) ChemTech 17:570

    CAS  Google Scholar 

  47. Gärtner R, Cornils B, Springer H, Lappe P, DE 32 35 030 A1 (22.09.1982) to Ruhrchemie AG

  48. Bartik T, Bartik B, Hanson BE, Glass T, Bebout W (1992) Inorg Chem 31:2667

    Article  CAS  Google Scholar 

  49. Herrmann WA, Albanese GP, Manetsberger RB, Lappe P, Bahrmann H (1995) Angew Chem Int Ed Engl 34:811

    Article  CAS  Google Scholar 

  50. Hida S, Roman PJ Jr, Bowden AA, Atwood JD (1998) J Coord Chem 43:345

    Article  CAS  Google Scholar 

  51. Bhanage BM, Divekar SS, Deshpande RM, Chaudhari RV (2000) Org Process Res Dev 4:342

    Article  CAS  Google Scholar 

  52. Bormann D, Tilloy S, Monflier E (1999) Vib Spectrosc 20:165

    Article  CAS  Google Scholar 

  53. Kurtev K, Ribola D, Jones RA, Cole-Hamilton DJ, Wilkinson G (1980) J Chem Soc Dalton Trans. https://doi.org/10.1039/DT9800000055

    Article  Google Scholar 

  54. Michel C, Zaffran J, Ruppert AM, Matras-Michalska J, Jędrzejczyk M, Grams J, Sautet Ph (2014) Chem Commun 50:12450

    Article  CAS  Google Scholar 

  55. de Vries JG (2014) Top Catal 57:1306

    Article  CAS  Google Scholar 

  56. Tay BY, Wang C, Phua PH, Stubbs LP, Huynh HV (2016) Dalton Trans 45:3558

    Article  CAS  PubMed  Google Scholar 

  57. Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Angew Chem Int Ed 49:4479

    Article  CAS  Google Scholar 

  58. Palkovits R (2010) Angew Chem Int Ed 49:4336

    Article  CAS  Google Scholar 

  59. Kon K, Onodera W, Shimizu K-I (2014) Catal Sci Technol 4:3227

    Article  CAS  Google Scholar 

  60. Gu X-M, Zhang B, Liang H-J, Ge H-B, Yang H-M, Qin Y (2017) J Fuel Chem Technol 45:714

    Article  CAS  Google Scholar 

  61. Bouriazos S, Sotiriou P, Stathis G, Papadogianakis (2014) Appl Catal B 150–151:345

  62. Stathis P, Stavroulaki D, Kaika N, Krommyda K, Papadogianakis G (2017) Appl Catal B 209:579

    Article  CAS  Google Scholar 

  63. ten Brink G-J, Arends IWCE, Papadogianakis G, Sheldon RA (1998) Chem Commun 2359

  64. ten Brink G-J, Arends IWCE, Papadogianakis G, Sheldon RA (2000) Appl Catal A 194–195:435

  65. Bond JQ, Alonso DM, West RM, Dumesic JA (2010) Langmuir 26:16291

    Article  CAS  PubMed  Google Scholar 

  66. Bond JQ, Wang D, Alonso DM, Dumesic JA (2011) J Catal 281:290

    Article  CAS  Google Scholar 

  67. Tóth Z, Joó F, Beck MT (1980) Inorg Chim Acta 42:153

    Article  Google Scholar 

  68. Geilen FMA, Engendahl B, Hölscher M, Klankermayer J, Leitner W (2011) J Am Chem Soc 133:14349

    Article  CAS  PubMed  Google Scholar 

  69. Ding H, Hanson BE (1995) J Mol Catal A 99:131

    Article  CAS  Google Scholar 

  70. Papadogianakis G, Maat L, Sheldon RA (1994) J Chem Soc Chem Commun. https://doi.org/10.1039/C39940002659

    Article  Google Scholar 

  71. Papadogianakis G, Peters JA, Maat L, Sheldon RA (1995) J Chem Soc Chem Commun 1105

  72. Papadogianakis G, Maat L, Sheldon RA (1997) J Mol Catal A 116:179

    Article  CAS  Google Scholar 

  73. Papadogianakis G, Maat L, Sheldon RA (1997) J Chem Technol Biotechnol 70:83

    Article  CAS  Google Scholar 

  74. Sheldon RA, Maat L, Papadogianakis G, US patent 5 536 874 (1996), WO 96/26177 (1996) to Hoechst Celanese Corp

  75. Papadogianakis G, Bouriazos A, Mouratidis K, Psaroudakis N, EP 1 918 358 B1 (2006), US 8 263 794 Β2 (2012), ES 2 391 466 T3 (2012), WO 2008/043454 A1 (2007), CA 2 672 680 A1 (2008) and US 2010/0022664 A1 (2010) to Cognis IP Management GmbH and National & Kapodistrian University of Athens

  76. Bouriazos K, Mouratidis N, Psaroudakis G, Papadogianakis (2008) Catal Lett 121:158

    Article  CAS  Google Scholar 

  77. Bouriazos S, Sotiriou C, Vangelis G, Papadogianakis (2010) J Organomet Chem 695:327

    Article  CAS  Google Scholar 

  78. Bouriazos E, Ikonomakou G, Papadogianakis (2014) Ind Crops Prod 52:205

    Article  CAS  Google Scholar 

  79. Bouriazos Ch, Vasiliou A, Tsichla G, Papadogianakis (2015) Catal Today 247:20

    Article  CAS  Google Scholar 

  80. Vangelis A, Bouriazos S, Sotiriou M, Samorski B, Gutsche G, Papadogianakis (2010) J Catal 274:21

    Article  CAS  Google Scholar 

  81. Williams DBG, Shaw ML, Green MJ, Holzapfel CW (2008) Angew Chem Int Ed 47:560

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this research by the Postgraduate Studies Programme on “Catalysis and its Applications in the Industry” of Greek Ministry of Education and by the Special Account for Research Grants of the Research Committee of the National and Kapodistrian University of Athens under contract 70/4/7568 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Papadogianakis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krommyda, K., Panopoulou, C., Moustani, C. et al. A Remarkable Effect of Aluminum on the Novel and Efficient Aqueous-Phase Hydrogenation of Levulinic Acid into γ-Valerolactone Using Water-Soluble Platinum Catalysts Modified with Nitrogen-Containing Ligands. Catal Lett 149, 1250–1265 (2019). https://doi.org/10.1007/s10562-019-02707-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02707-9

Keywords

Navigation