Skip to main content
Log in

Green Oxidation of Cyclohexanone to Adipic Acid over Phosphotungstic Acid Encapsulated in UiO-66

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A very stable catalyst, phosphotungstic acid (PTA) encapsulated in metal–organic framework UiO-66, was prepared by a simple one-pot solvothermal method. Characterization results show that UiO-66 is quite stable in the catalyst preparation process, and PTA is encapsulated in the cavities of UiO-66 with good dispersity. The as-synthesized composite material exhibited good catalytic activity and excellent reusability for the green oxidation of cyclohexanone to adipic acid (AA). Under mild reaction conditions, the isolated yield of AA was as high as 80.3% without the introduction of any organic solvent or phase transfer agent. The excellent immobilization effect of UiO-66 for PTA is mainly because UiO-66 has a well matched window size to confine PTA molecule in its nanocages.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AA:

Adipic acid

DMF:

N,N-dimethylformamide

FT-IR:

Fourier transform infrared spectroscopy

ICP-AES:

Inductively coupled plasma-atomic emission spectroscopy

MOFs:

Metal–organic frameworks

PTA:

Phosphotungstic acid

SEM:

Scanning electron microscope

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

TOF:

Turnover frequency

XRD:

X-ray diffraction

References

  1. Van de Vyver S, Roman-Leshkov Y (2013) Emerging catalytic processes for the production of adipic acid. Catal Sci Technol 3:1465–1479

    Article  Google Scholar 

  2. Rahman A, Mupa M, Mahamadi C (2016) A mini review on new emerging trends for the synthesis of adipic acid from metal-nano heterogeneous catalysts. Catal Lett 146:788–799

    Article  CAS  Google Scholar 

  3. Usui Y, Sato K (2003) A green method of adipic acid synthesis: organic solvent- and halide-free oxidation of cycloalkanones with 30% hydrogen peroxide. Green Chem 5:373–375

    Article  CAS  Google Scholar 

  4. Xia CJ, Lu L, Zhao Y, Xu HY, Zhu B, Gao FF, Lin M, Dai ZY, Zou XD, Shu XT (2015) Heterogeneous oxidation of cyclohexanone catalyzed by TS-1: combined experimental and DFT studies. Chin J Catal 36:845–854

    Article  CAS  Google Scholar 

  5. Bhanja P, Chatterjee S, Patra AK, Bhaumik A (2018) A new microporous oxyfluorinated titanium(IV) phosphate as an efficient heterogeneous catalyst for the selective oxidation of cyclohexanone. J Colloid Interface Sci 511:92–100

    Article  CAS  PubMed  Google Scholar 

  6. Benadji S, Mazari T, Dermeche L, Salhi N, Cadot E, Rabia C (2013) Clean alternative for adipic acid synthesis via liquid-phase oxidation of cyclohexanone and cyclohexanol over H3−2xCoxPMo12O40 catalysts with hydrogen peroxide. Catal Lett 143:749–755

    Article  CAS  Google Scholar 

  7. Tahar A, Benadji S, Mazari T, Dermeche L, Marchal-Roch C, Rabia C (2015) Preparation, characterization and reactivity of Keggin type phosphomolybdates, H3−2xNixPMo12O40 and (NH4)3−2xNixPMo12O40, for adipic acid synthesis. Catal Lett 145:569–575

    Article  CAS  Google Scholar 

  8. Patra AK, Dutta A, Bhaumik A (2013) Mesoporous core–shell Fenton nanocatalyst: a mild, operationally simple approach to the synthesis of adipic acid. Chem Eur J 19:12388–12395

    Article  CAS  PubMed  Google Scholar 

  9. Zhu WS, Li HM, He XY, Zhang Q, Shu HM, Yan YS (2008) Synthesis of adipic acid catalyzed by surfactant-type peroxotungstates and peroxomolybdates. Catal Commun 9:551–555

    Article  CAS  Google Scholar 

  10. Xia CJ, Zhu B, Lin M, Shu XT (2012) A “green” cyclohexanone oxidation route catalyzed by hollow titanium silicate zeolite for preparing ε-caprolactone, 6-hydroxyhexanoic acid and adipic acid. China Pet Process Petrochem Technol 14:33–41

    CAS  Google Scholar 

  11. Moudjahed M, Dermeche L, Benadji S, Mazari T, Rabia C (2016) Dawson-type polyoxometalates as green catalysts for adipic acid synthesis. J Mol Catal A 414:72–77

    Article  CAS  Google Scholar 

  12. Ding ZB, Lian H, Wang QR, Tao FG (2004) Oxidation of cyclohexanone to adipic acid with 30% H2O2 and tungstate catalyst. Chin J Org Chem 24:319–321

    CAS  Google Scholar 

  13. Zhang M, Wei JF, Bai YJ, Gao Y, Wu Y, Mao YQ, Shi Z (2006) Study of clear oxidation of cyclohexanone to adipic acid using hydrogen peroxide. Chin J Org Chem 26:207–210

    Article  Google Scholar 

  14. Ye TX, Ma XN, Liu JY (2009) Catalytic oxidation of cyclohexanone to adipic acid catalysed by supported phosphotungstic acid. Ind Catal 17:46–48

    CAS  Google Scholar 

  15. Wang XD, Wu WY, Tu GF, Jiang KX (2010) Oxidation of cyclohexanone to adipic acid catalyzed by lactam-based ionic liquid. Chin J Org Chem 30:1935–1938

    Article  CAS  Google Scholar 

  16. Yang XL, Qiao LM, Dai WL (2015) Phosphotungstic acid encapsulated in metal–organic framework UiO-66: an effective catalyst for the selective oxidation of cyclopentene to glutaraldehyde. Microporous Mesoporous Mater 211:73–81

    Article  CAS  Google Scholar 

  17. Wang XS, Li L, Liang J, Huang YB, Cao R (2017) Boosting oxidative desulfurization of model and real gasoline over phosphotungstic acid encapsulated in metal–organic frameworks: the window size matters. ChemCatChem 9:971–979

    Article  CAS  Google Scholar 

  18. Gamelas JAF, Oliveira F, Evtyugina MG, Portugal I, Evtuguin DV (2016) Catalytic oxidation of formaldehyde by ruthenium multisubstituted tungstosilicic polyoxometalate supported on cellulose/silica hybrid. Appl Catal A 509:8–16

    Article  CAS  Google Scholar 

  19. Wu NJ, Li BS, Ma W, Han CY (2014) Synthesis of lacunary polyoxometalate encapsulated into hexagonal mesoporous silica and their catalytic performance in esterification. Microporous Mesoporous Mater 186:155–162

    Article  CAS  Google Scholar 

  20. Thompson DJ, Zhang Y, Ren T (2014) Polyoxometalate [γ-SiW10O34(H2O)2]4− on MCM-41 as catalysts for sulfide oxygenation with hydrogen peroxide. J Mol Catal A 392:188–193

    Article  CAS  Google Scholar 

  21. Suo L, Meng RQ, Zheng DM, Wu LX, Bi LH (2014) Preparation, characterization and catalytic activity studies of organoruthenium-supported polyoxotungstates on SBA-15. Appl Organomet Chem 28:845–851

    Article  CAS  Google Scholar 

  22. Du DY, Qin JS, Li SL, Su ZM, Lan YQ (2014) Recent advances in porous polyoxometalate based metal–organic framework materials. Chem Soc Rev 43:4615–4632

    Article  CAS  PubMed  Google Scholar 

  23. Bai Y, Dou YB, Xie LH, Rutledge W, Li JR, Zhou HC (2016) Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 45:2327–2367

    Article  CAS  PubMed  Google Scholar 

  24. Huang G, Chen YZ, Jiang HL (2016) Metal–organic frameworks for catalysis. Acta Chim Sin 74:113–129

    Article  CAS  Google Scholar 

  25. Jiao L, Wang Y, Jiang HL, Xu Q (2017) Metal–organic frameworks as platforms for catalytic applications. Adv Mater 29:1703663

    Google Scholar 

  26. Cirujano FG (2017) MOFs vs. zeolites: carbonyl activation with M(IV) catalytic sites. Catal Sci Technol 7:5482–5494

    Article  CAS  Google Scholar 

  27. Hu XF, Lu YK, Dai FN, Liu CG, Liu YQ (2013) Host–guest synthesis and encapsulation of phosphotungstic acid in MIL-101 via “bottle around ship”: an effective catalyst for oxidative desulfurization. Microporous Mesoporous Mater 170:36–44

    Article  CAS  Google Scholar 

  28. Zhang FM, Jin Y, Shi J, Zhong YJ, Zhu WD, El-Shall MS (2015) Polyoxometalates confined in the mesoporous cages of metal–organic framework MIL-100(Fe): efficient heterogeneous catalysts for esterification and acetalization reactions. Chem Eng J 269:236–244

    Article  CAS  Google Scholar 

  29. Chen LY, Luque R, Li YW (2017) Controllable design of tunable nanostructures inside metal–organic frameworks. Chem Soc Rev 46:4614–4630

    Article  CAS  PubMed  Google Scholar 

  30. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Article  CAS  PubMed  Google Scholar 

  31. Wu H, Chua YS, Krungleviciute V, Tyagi M, Chen P, Yildirim T, Zhou W (2013) Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 135:10525–10532

    Article  CAS  PubMed  Google Scholar 

  32. Valenzano L, Civalleri B, Chavan S, Bordiga S, Nilsen MH, Jakobsen S, Lillerud KP, Lamberti C (2011) Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem Mater 23:1700–1718

    Article  CAS  Google Scholar 

  33. Granadeiro CM, Ribeiro SO, Karmaoui M, Valenca R, Ribeiro JC, Castro B, Cunha-Silva L, Balula SS (2015) Production of ultra-deep sulfur-free diesels using a sustainable catalytic system based on UiO-66(Zr). Chem Commun 51:13818–13821

    Article  CAS  Google Scholar 

  34. Fei B, Lu H, Chen W, Xin JH (2006) Ionic peapods from carbon nanotubes and phosphotungstic acid. Carbon 44:2261–2264

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21302237, 51708075) and the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1713335, KJQN201801527).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Feng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Li, M. & Meng, X. Green Oxidation of Cyclohexanone to Adipic Acid over Phosphotungstic Acid Encapsulated in UiO-66. Catal Lett 149, 1504–1512 (2019). https://doi.org/10.1007/s10562-019-02764-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02764-0

Keywords

Navigation