Skip to main content

Advertisement

Log in

One-Dimensional Mesoporous Anatase-TiO2/Rutile-TiO2/ZnTiO3 Triphase Heterojunction with Boosted Photocatalytic Hydrogen Production Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The rational design of heterojunction photocatalysts with unique mesoporous structure is of significant importance for obtaining enhanced conversion efficiency of solar energy to hydrogen energy. In present work, for the first time, anatase-TiO2/rutile-TiO2/ZnTiO3 (TiO2(A-R)/ZnTiO3) heterojunction photocatalysts with a unique mesoporous structure were synthetized by a foaming agent assisted electrospinning method. The obtained mesoporous TiO2(A-R)/ZnTiO3 nanofibers photocatalyst showed the highest hydrogen generation rate (887.7 μmol·g−1·h−1) without use of any co-catalytic noble metals, which was approximately 2.0, 2.2 and 1.4 times higher than those of ordinary solid TiO2(A-R)/ZnTiO3, mesoporous TiO2(A-R) and mesoporous TiO2(A)/ZnTiO3 nanofibers, respectively. Significantly, the archived hydrogen generation rate is also better or comparable to the some ever reported 1D TiO2 based photocatalysts. The unique 1D mesoporous nanostructure would make the reactants and products migrating easily into/out of the photocatalyst while the closely-coupled triphase heterojunction can significantly favor the separation of photogenerated electron–hole pairs, thus synergistically contributing to the improved photocatalytic activity. We also proposed that three types of charge transfer routes over the heterojunction photocatalysts, named “waterfall”, “concave” and “convex”, might concurrently promote the separation of photoinduced electrons and holes in this triphase photocatalyst system, thereby efficiently boost the photocatalytic hydrogen production activity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sustain Energy Rev 4:157–175

    Google Scholar 

  2. Xu X, Hu L, Gao N, Liu S, Wageh S, Al-Ghamdi A, Alshahrie A, Fang X (2015) Controlled growth from ZnS nanoparticles to ZnS-CdS nanoparticle hybrids with enhanced photoactivity. Adv Funct Mater 25(3):445–454

    CAS  Google Scholar 

  3. Liu S, Zheng L, Yu P, Han S, Fang X (2016) Novel composites of α-Fe2O3 tetrakaidecahedron and graphene oxide as an effective photoelectrode with enhanced photocurrent performances. Adv Funct Mater 26(19):3331–3339

    CAS  Google Scholar 

  4. Shih CF, Zhang T, Li J, Bai C (2018) Powering the future with liquid sunshine. Joule 2:1925–1949

    CAS  Google Scholar 

  5. Wu J, Xie Y, Ling Y, Si J, Li X, Wang J, Ye H, Zhao J, Li S, Zhao Q, Hou Y (2020) One-step synthesis and Gd3+ decoration of BiOBr microspheres consisting of nanosheets toward improving photocatalytic reduction of CO2 into hydrocarbon fuel. Chem Eng J 400:125944

    CAS  Google Scholar 

  6. Shi Q, Liu Q, Ma Y, Fang Z, Liang Z, Shao G, Tang B, Yang W, Qin L, Fang X (2020) High-performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanoparticles for zinc-air battery and self-powered overall water splitting. Adv Energy Mater 10:1903854

    CAS  Google Scholar 

  7. Jacobson MZ, Colella WG, Golden DM (2005) Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 308:1901–1905

    CAS  PubMed  Google Scholar 

  8. da Silva VT, Mozer TS, da Costa Rubim Messeder dos Santos R, da Silva CA (2017) Hydrogen: trends, production and characterization of the main process worldwide. Int J Hydrogen Energy 42:2018–2033

    Google Scholar 

  9. Chen W, Pei J, He C-T, Wan J, Ren H, Zhu Y, Wang Y, Dong J, Tian S, Cheong W-C, Lu S, Zheng L, Zheng X, Yan W, Zhuang Z, Chen C, Peng Q, Wang D, Li Y (2017) Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew Chem Int Ed 56:16086–16090

    CAS  Google Scholar 

  10. Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li Y-W (2017) Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544:80–83

    CAS  PubMed  Google Scholar 

  11. Zhang Y, Jin Z, Yan X, Wang H, Wang G (2019) Effect of Ni(OH)2 on CdS@g-C3N4 composite for efficient photocatalytic hydrogen production. Catal Lett 149:1174–1185

    CAS  Google Scholar 

  12. Kosco J, Bidwell M, Cha H, Martin T, Howells CT, Sachs M, Anjum DH, Gonzalez Lopez S, Zou L, Wadsworth A, Zhang W, Zhang L, Tellam J, Sougrat R, Laquai F, DeLongchamp DM, Durrant JR, McCulloch I (2020) Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat Mater 19:559–565

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Patrascu M, Sheintuch M (2015) On-site pure hydrogen production by methane steam reforming in high flux membrane reactor: experimental validation, model predictions and membrane inhibition. Chem Eng J 262:862–874

    CAS  Google Scholar 

  14. Leonzio G (2019) ANOVA analysis of an integrated membrane reactor for hydrogen production by methane steam reforming. Int J Hydrogen Energy 44:11535–11545

    CAS  Google Scholar 

  15. Shiva Kumar S, Himabindu V (2019) Hydrogen production by PEM water electrolysis-a review. Mater Sci Energy Technol 2:442–445

    Google Scholar 

  16. Zohuri B (2019) Large-scale hydrogen production. In: Zohuri B (ed) Hydrogen energy: challenges and solutions for a cleaner future. Springer International Publishing, Cham, pp 229–255

    Google Scholar 

  17. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    CAS  PubMed  Google Scholar 

  18. Liu M, Chen Y, Su J, Shi J, Wang X, Guo L (2016) Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat Energy 1:1–8

    Google Scholar 

  19. Liu Y, Xie Y, Liu L, Jiao J (2017) Sulfur vacancy induced high performance for photocatalytic H2 production over 1T@2H phase MoS2 nanolayers. Catal Sci Technol 7(23):5635–5643

    CAS  Google Scholar 

  20. Yang Y, Li X, Lu C, Huang W (2019) G-C3N4 Nanosheets coupled with TiO2 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity for hydrogen production. Catal Lett 149:2930–2939

    CAS  Google Scholar 

  21. Liu Y, Xie Y, Ling Y, Jiao J, Li X, Zhao J (2019) Facile construction of a molybdenum disulphide/zinc oxide nanosheet hybrid for an advanced photocatalyst. J Alloy Compd 778:761–767

    CAS  Google Scholar 

  22. Hou H, Wang L, Gao F, Yang X, Yang W (2019) BiVO4@TiO2 core–shell hybrid mesoporous nanofibers towards efficient visible-light-driven photocatalytic hydrogen production. J Mater Chem C 7:7858–7864

    CAS  Google Scholar 

  23. Hou H, Zeng X, Zhang X (2020) 2D/2D heterostructured photocatalyst: rational design for energy and environmental applications. Sci China Mater. https://doi.org/10.1007/s40843-019-1256-0

    Article  Google Scholar 

  24. Zhu Y, Lv C, Yin Z, Ren J, Yang X, Dong CL, Liu H, Cai R, Huang YC, Theis W, Shen S, Yang D (2020) A [001]-oriented hittorf's phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew Chem 132:868–873

    Google Scholar 

  25. Zhu Y, Li J, Cao J, Lv C, Huang G, Zhang G, Xu Y, Zhang S, Meng P, Zhan T, Yang D (2020) Phosphorus-doped polymeric carbon nitride nanosheets for enhanced photocatalytic hydrogen production. APL Mater 8(4):041108

    CAS  Google Scholar 

  26. Liu Y, Xu C, Xie Y, Yang L, Ling Y, Chen L (2020) Au-Cu nanoalloy/TiO2/MoS2 ternary hybrid with enhanced photocatalytic hydrogen production. J Alloy Compd 820:153440

    CAS  Google Scholar 

  27. Zhu Y, Ren J, Zhang X, Yang D (2020) Elemental red phosphorus-based materials for photocatalytic water purification and hydrogen production. Nanoscale. https://doi.org/10.1039/D0NR01748E

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  PubMed  Google Scholar 

  29. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21

    CAS  Google Scholar 

  30. Hou H, Gao F, Wang L, Shang M, Yang Z, Zheng J, Yang W (2016) Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO2/WO3/g-C3N4 nanofibers for visible-light-driven hydrogen evolution. J Mater Chem A 4:6276–6281

    CAS  Google Scholar 

  31. Hu D, Xie Y, Liu L, Zhou P, Zhao J, Xu J, Ling Y (2016) Constructing TiO2 nanoparticles patched nanorods heterostructure for efficient photodegradation of multiple organics and H2 production. Appl Catal B 188:207–216

    CAS  Google Scholar 

  32. Xie Y, Hu D, Liu L, Zhou P, Xu J, Ling Y (2016) Oxygen vacancy induced fast lithium storage and efficient organics photodegradation over ultrathin TiO2 nanolayers grafted graphene sheets. J Hazard Mater 318:551–560

    CAS  PubMed  Google Scholar 

  33. Zheng L, Han S, Liu H, Yu P, Fang X (2016) Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 12(11):1527–1536

    CAS  PubMed  Google Scholar 

  34. Shen S, Chen J, Wang M, Sheng X, Chen X, Feng X, Mao SS (2018) Titanium dioxide nanostructures for photoelectrochemical applications. Prog Mater Sci 98:299–385

    CAS  Google Scholar 

  35. Fu H, Yang L, Hu D, Yu C, Ling Y, Xie Y, Li S, Zhao J (2018) Titanium dioxide nano-heterostructure with nanoparticles decorating nanowires for high-performance photocatalysis. Int J Hydrogen Energy 43(22):10359–10367

    CAS  Google Scholar 

  36. Zeng D, Yang L, Zhou P, Hu D, Xie Y, Li S, Jiang L, Ling Y, Zhao J (2018) AuCu alloys deposited on titanium dioxide nanosheets for efficient photocatalytic hydrogen evolution. Int J Hydrogen Energy 43(32):15155–15163

    CAS  Google Scholar 

  37. Yu H, Yuan R, Gao D, Xu Y, Yu J (2019) Ethyl acetate-induced formation of amorphous MoSx nanoclusters for improved H2-evolution activity of TiO2 photocatalyst. Chem Eng J 375:121934

    CAS  Google Scholar 

  38. Zhu Y, Li J, Dong C-L, Ren J, Huang Y-C, Zhao D, Cai R, Wei D, Yang X, Lv C, Theis W, Bu Y, Han W, Shen S, Yang D (2019) Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water. Appl Catal B 255:117764

    CAS  Google Scholar 

  39. Li Y, Ding L, Liang Z, Xue Y, Cui H, Tian J (2020) Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2. Chem Eng J 383:123178

    CAS  Google Scholar 

  40. Meng A, Zhang L, Cheng B, Yu J (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31:1807660

    Google Scholar 

  41. Sun C, Xu Q, Xie Y, Ling Y, Hou Y (2018) Designed synthesis of anatase–TiO2(B) biphase nanowire/ZnO nanoparticle heterojunction for enhanced photocatalysis. J Mater Chem A 6(18):8289–8298

    CAS  Google Scholar 

  42. Li G, Gray KA (2007) Preparation of mixed-phase titanium dioxide nanocomposites via solvothermal processing. Chem Mater 19:1143–1146

    CAS  Google Scholar 

  43. Ju M-G, Sun G, Wang J, Meng Q, Liang W (2014) Origin of high photocatalytic properties in the mixed-phase TiO2: a first-principles theoretical study. ACS Appl Mater Interfaces 6:12885–12892

    CAS  PubMed  Google Scholar 

  44. Apopei P, Catrinescu C, Teodosiu C, Royer S (2014) Mixed-phase TiO2 photocatalysts: crystalline phase isolation and reconstruction, characterization and photocatalytic activity in the oxidation of 4-chlorophenol from aqueous effluents. Appl Catal B 160–161:374–382

    Google Scholar 

  45. Li J, Xu X, Liu X, Qin W, Wang M, Pan L (2017) Metal-organic frameworks derived cake-like anatase/rutile mixed phase TiO2 for highly efficient photocatalysis. J Alloys Compd 690:640–646

    CAS  Google Scholar 

  46. Liu B, Peng L (2013) Facile formation of mixed phase porous TiO2 nanotubes and enhanced visible-light photocatalytic activity. J Alloy Compd 571:145–152

    CAS  Google Scholar 

  47. Zhang Y, Wang L, Yu S, Jiang H, Yun Y, Sun Y, Shi J (2018) Ag-induced synthesis of three dimensionally ordered macroporous anatase/rutile homojunction for solar light-driven Z-scheme photocatalysis. Sol Energy 174:770–779

    CAS  Google Scholar 

  48. Assayehegn E, Solaiappan A, Chebude Y, Alemayehu E (2020) Fabrication of tunable anatase/rutile heterojunction N/TiO2 nanophotocatalyst for enhanced visible light degradation activity. Appl Surf Sci 515:145966

    CAS  Google Scholar 

  49. Zhou T, Chen S, Li L, Wang J, Zhang Y, Li J, Bai J, Xia L, Xu Q, Rahim M, Zhou B (2020) Carbon quantum dots modified anatase/rutile TiO2 photoanode with dramatically enhanced photoelectrochemical performance. Appl Catal B 269:118776

    CAS  Google Scholar 

  50. Zhou X, Wu J, Li Q, Qi Y, Ji Z, He P, Qi X, Sheng P, Li Q, Ren J (2017) Improved electron-hole separation and migration in V2O5/rutile-anatase photocatalyst system with homo-hetero junctions and its enhanced photocatalytic performance. Chem Eng J 330:294–308

    CAS  Google Scholar 

  51. Zhong C, Weng W, Liang X, Gu D, Xiao W (2020) One-step molten-salt synthesis of anatase/rutile bi-phase TiO2@MoS2 hierarchical photocatalysts for enhanced solar-driven hydrogen generation. Appl Surf Sci 507:145072

    CAS  Google Scholar 

  52. Hou H, Shang M, Wang L, Li W, Tang B, Yang W (2015) Efficient photocatalytic activities of TiO2 hollow fibers with mixed phases and mesoporous walls. Sci Rep 5:15228

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen J, Ouyang W, Yang W, He JH, Fang X (2020) Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications. Adv Funct Mater 30(16):1909909

    CAS  Google Scholar 

  54. Hou H, Shang M, Gao F, Wang L, Liu Q, Zheng J, Yang Z, Yang W (2016) Highly efficient photocatalytic hydrogen evolution in ternary hybrid TiO2/CuO/Cu thoroughly mesoporous nanofibers. ACS Appl Mater Interfaces 8:20128–20137

    CAS  PubMed  Google Scholar 

  55. Hou H, Wang L, Yang W, Gao F (2018) Highly efficient visible-light active photocatalyst: thoroughly mesoporous Fe doped TiO2 nanofibers. J Mater Sci Mater Electron 29:2733–2742

    CAS  Google Scholar 

  56. Hou H, Shao G, Yang W, Wong W-Y (2020) One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption. Prog Mater Sci 113:100671

    CAS  Google Scholar 

  57. Ke S, Cheng X, Wang Q, Wang Y, Pan Z (2014) Preparation of a photocatalytic TiO2/ZnTiO3 coating on glazed ceramic tiles. Ceram Int 40:8891–8895

    CAS  Google Scholar 

  58. Tian H, Wang S, Zhang C, Veder JP, Liu J (2017) Design and synthesis of porous ZnTiO3/TiO2 nanocages with heterojunctions for enhanced photocatalytic H2 production. J Mater Chem A 5:11615–11622

    CAS  Google Scholar 

  59. Li X, Xiong J, Huang J, Feng Z, Luo J (2019) Novel g-C3N4/h′-ZnTiO3-a′-TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity. J Alloys Compd 774:768–778

    CAS  Google Scholar 

  60. Zhang W-H, Ji Q-H, Lan H-C, Li J (2019) Preparation of ZnTiO3/TiO2 photocatalyst and its mechanism on photocatalytic degradation of organic pollutants. Environ Sci 40:693–700

    Google Scholar 

  61. Baamran KS, Tahir M (2019) Ni-embedded TiO2-ZnTiO3 reducible perovskite composite with synergistic effect of metal/support towards enhanced H2 production via phenol steam reforming. Energy Convers Manage 200:112064

    CAS  Google Scholar 

  62. Hou H, Wang L, Gao F, Wei G, Tang B, Yang W, Wu T (2014) General strategy for fabricating thoroughly mesoporous nanofibers. J Am Chem Soc 136:16716–16719

    CAS  PubMed  Google Scholar 

  63. Ranjith SK, Uyar T (2018) Conscientious design of Zn-S/Ti-N layer by transformation of ZnTiO3 on electrospun ZnTiO3@TiO2 nanofibers: stability and reusable photocatalytic performance under visible irradiation. ACS Sustain Chem Eng 6:12980–12992

    CAS  Google Scholar 

  64. Hou H, Liu H, Gao F, Shang M, Wang L, Xu L, Wong W-Y, Yang W (2018) Packaging BiVO4 nanoparticles in ZnO microbelts for efficient photoelectrochemical hydrogen production. Electrochim Acta 283:497–508

    CAS  Google Scholar 

  65. Ma Z, Hou H, Song K, Fang Z, Wang L, Gao F, Yang W, Tang B, Kuang Y (2020) Engineering oxygen vacancies by one-step growth of distributed homojunctions to enhance charge separation for efficient photoelectrochemical water splitting. Chem Eng J 379:122266

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by State Grid Zhejiang Electric Power Co., LTD Double Innovation Project (Grant No. B711JZ190006) and State Grid Co., Headquarters Science and Technology Project (Grant No. 5400-201919487A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiyou Yang or Huilin Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 760 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhu, Y., Ye, X. et al. One-Dimensional Mesoporous Anatase-TiO2/Rutile-TiO2/ZnTiO3 Triphase Heterojunction with Boosted Photocatalytic Hydrogen Production Activity. Catal Lett 151, 359–369 (2021). https://doi.org/10.1007/s10562-020-03322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03322-9

Keywords

Navigation