Skip to main content
Log in

High Activity and Selective Fischer–Tropsch Catalysts for Use in a Microchannel Reactor

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Each process configuration for practicing the Fischer–Tropsch synthesis places demands particular to that configuration on the catalyst to be used. We discuss how a particular catalyst, prepared by the OMX (organic matrix combustion) method, when used in conjunction with the Velocys microchannel reactor system, results in a very stable, high performance Fischer–Tropsch synthesis system. With the ability to remove heat far more effectively than a conventional reactor system, this microchannel reactor requires a catalyst with much higher volumetric reactive site density. Further, with such a high volumetric reaction rate, mass transfer effects will be important in both the observed activity and selectivity of the operating catalyst. Nevertheless, the catalyst prepared using the OMX method exhibits an apparent turnover frequency which is considerably higher than reported for other catalysts in the literature. In addition to high activity, an economically useful catalyst must exhibit a stable, high selectivity for liquid products and be able to recover near-fresh performance using a regeneration approach which can be carried out with the catalyst in-place. An example of such a stable, multiply regenerated catalyst is given. Finally, further development has focused on a catalyst with even higher C5+ selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fischer, F. and Tropsch, H. United States Patent US 1,746,464 (1930)

  2. Davis BH (2005) Top Catal 32:143–168

    Article  CAS  Google Scholar 

  3. Bartholomew CH (1990) Catal Lett 7:303–315

    Article  CAS  Google Scholar 

  4. Dry ME (1996) Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl Catal A 138:319–344

    Article  CAS  Google Scholar 

  5. Dry ME (2001) J Chem Technol Biotechnol 77:43–50

    Article  Google Scholar 

  6. Leckel D (2009) Energy Fuels 23:2342–2358

    Article  CAS  Google Scholar 

  7. Deshmukh SR, Tonkovich ALY, Jarosch KT, Schrader L, Fitzgerald SP, Kilanowski DR, Lerou JJ, Mazanec TJ (2010) Ind Eng Chem Res 49:10883–10888

    Article  CAS  Google Scholar 

  8. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128:3956–3964

    Article  CAS  Google Scholar 

  9. Park J-Y, Lee Y-J, Karandikar PK, Jun K-W, Ha K-S, Park H-G (2012) Appl Catal A 411–412:15–23

    Article  Google Scholar 

  10. den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Frøseth V, Holmen A, de Jong KP (2009) J Am Chem Soc 131:7197–7203

    Article  Google Scholar 

  11. Xiao, T., Qian, Y., WO2008104793(A2) (2008), to Oxford Catalysts Ltd.

  12. Li F, Hu K, Li J, Zhang D, Chen G (2002) J Nucl Mater 300:82–88

    Article  CAS  Google Scholar 

  13. Toniolo J, Takimi A, Bergmann C (2010) Mater Res Bull 45:672–676

    Article  CAS  Google Scholar 

  14. Daly F., Richard, L. A., and Rugmini, S., PCT/GB2012/000125 (2012), to Oxford Catalysts Ltd.

  15. Richard LA, Moreau P, Rugmini S, Daly F (2013) Appl Catal A 464–465:200–206

    Article  Google Scholar 

  16. Lögdberg S, Lualdi M, Järas S, Walmsley JC, Blekkan EA, Rytter E, Holmen (2010) J Catal 274:84–98

    Article  Google Scholar 

  17. Schanke D, Hilmen AM, Bergene E, Kinnari K, Rytter E, Ådnanes E, Holmen A (1995) Catal Lett 34:269–284

    Article  CAS  Google Scholar 

  18. Vervloet D, Kapteijn F, Nijenhuis J, van Ommen JR (2012) Catal Sci Technol 2:1221–1233

    Article  CAS  Google Scholar 

  19. Kruit KD, Vervloet D, Kapteijn F, van Ommen JR (2013) Catal Sci Technol 3:2210–2213

    Article  CAS  Google Scholar 

  20. Becker H, Gűttel R, Turek T (2014) Chem Eng Tech 86:544–549

    CAS  Google Scholar 

  21. Bouh AO, Rice GL, Scott SL (1999) J Am Chem Soc 121:7201–7210

    Article  CAS  Google Scholar 

  22. Bu S, Gao ZW, Li JL, Tikkanen W (2011) Adv Mater Res 194–196:1807–1810

    Article  Google Scholar 

  23. Daly, F., Richard, L., and Rugmini, S., US 2014/0088206 A1 (2014)

  24. LeViness S, Deshmukh SR, Richard LA, Robota HJ (2014) Top Catal 57:518–525

    Article  CAS  Google Scholar 

  25. Saib AM, Moodley DJ, Ciobîca IM, Hauman MM, Sigwebela BH, Weststrate CJ, Niemansverdriet JW, van de Loosdrecht J (2010) Catal Today 154:271–282

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz J. Robota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robota, H.J., Richard, L.A., Deshmukh, S. et al. High Activity and Selective Fischer–Tropsch Catalysts for Use in a Microchannel Reactor. Catal Surv Asia 18, 177–182 (2014). https://doi.org/10.1007/s10563-014-9175-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-014-9175-x

Keywords

Navigation