Skip to main content
Log in

Vanadate-induced cell death is dissociated from H2O2 generation

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Vanadium is an environmentally toxic metal with peculiar and sometimes contradictory cellular effects. It is insulin-mimetic, it can either stimulate cell growth or induce cell death, and it has both mutagenic and antineoplastic properties. However, the mechanisms involved in those effects are poorly understood. Several studies suggest that H2O2 is involved in vanadate-induced cell death, but it is not known whether cellular sensitivity to vanadate is indeed related to H2O2 generation. In the present study, the sensitivity of four cell lines from different origins (K562, K562-Lucena 1, MDCK, and Ma104) to vanadate and H2O2 was evaluated and the production of H2O2 by vanadate was analyzed by flow cytometry. We show that cell lines very resistant to H2O2 (K562, K562-Lucena 1, and Ma104 cells) are much more sensitive to vanadate than MDCK, a cell line relatively susceptible to H2O2, suggesting that vanadate-induced cytotoxicity is not directly related to H2O2 responsiveness. In accordance, vanadate concentrations that reduced cellular viability to approximately 60–70% of the control (10 μmol/L) did not induce H2O2 formation. A second hypothesis, that peroxovanadium (PV) compounds, produced once vanadate enters into the cells, are responsible for the cytotoxicity, was only partially confirmed because MDCK cells were resistant to both vanadate and PV compounds (10 μmol/L each). Therefore, our results suggest that vanadate toxicity occurs by two distinct pathways, one dependent on and one independent of H2O2 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DHR:

dihydrorhodamine 123

PTP:

phosphotyrosine phosphatase

PV:

peroxovanadium

References

  • Aureliano M, Gandara RM. Decavanadate effects in biological systems. J Inorg Biochem 2005;99:979–85.

    Article  PubMed  CAS  Google Scholar 

  • Aureliano M, Joaquim N, Sousa A, Martins H, Coucelo JM. Oxidative stress in toadfish (Halobactrachus didactylus) cardiac muscle. Acute exposure to vanadate oligomers. J Inorg Biochem 2002;90:159–65.

    Article  PubMed  CAS  Google Scholar 

  • Aureliano M, Tiago T, Gandara RM, et al. Interactions of vanadium(V)-citrate complexes with the sarcoplasmic reticulum calcium pump. J Inorg Biochem 2005;99:2355–61.

    Article  PubMed  CAS  Google Scholar 

  • Barceloux DG. Vanadium. Toxicol Clin Toxicol 1999;37:265–78.

    Article  CAS  Google Scholar 

  • Bay BH, Sit KH, Paramanantham R, Chan YG. Hydroxyl free radicals generated by vanadyl[IV] induce cell blebbing in mitotic human Chang liver cells. BioMetals 1997;10:119–22.

    Article  PubMed  CAS  Google Scholar 

  • Bevan AP, Drake PG, Yale JF, Shaver A, Posner BI. Peroxovanadium compounds: biological actions and mechanism of insulin-mimetics. Mol Cell Biochem 1995;153:49–58.

    Article  PubMed  CAS  Google Scholar 

  • Boscolo P, Carmignani M, Volpe AR, et al. Renal toxicity and arterial hypertension in rats chronically exposed to vanadate. Occup Environ Med 1994;51:500–3.

    PubMed  CAS  Google Scholar 

  • Bruech M, Quintanilla ME, Legrum W, Koch J, Netter KJ, Fuhrmann GF. Effects of vanadate on intracellular reduction equivalents in mouse liver and the fate of vanadium in plasma, erythrocytes and liver. Toxicology 1984;31:283–95.

    Article  PubMed  CAS  Google Scholar 

  • Bursztyn M, Mekler J. Acute hypertensive response to saline induced by vanadate, an insulinomimetic agent. J Hypertens 1993;11:605–9.

    Article  PubMed  CAS  Google Scholar 

  • Cantley LC Jr, Aisen P. The fate of cytoplasmic vanadium. Biol Chem 1979;254:1781–4.

    CAS  Google Scholar 

  • Cantley LC Jr, Josephson L, Warner R, Yanagisawa M, Lechene C, Guidotti G. Vanadate is a potent (Na, K) -ATPase inhibitor found in ATP derived from muscle. J Biol Chem 1977;252:7421–3.

    PubMed  CAS  Google Scholar 

  • Capella MAM, Orind M, Morales MM, Rumjanek VM, Lopes AG. Expression of functionally P-glycoprotein in MA104 kidney cells. Z Naturforsch 1999;54c:119–27.

    Google Scholar 

  • Capella LS, Alcantara JSM, Moura-Neto V, Lopes AG, Capella MAM. Vanadate is toxic to adherent— growing multidrug-resistant cells. Tumor Biol 2000;21:54–62.

    Article  CAS  Google Scholar 

  • Capella LS, Gefe MR, Silva EF, et al. Reduced glutathione protect cells from ouabain toxicity. Biochim Biophys Acta 2001;1526:293–300.

    PubMed  CAS  Google Scholar 

  • Capella LS, Gefe MR, Silva EF, et al. Mechanisms of vanadate-induced cellular toxicity: role of cellular glutathione and NADPH. Arch Biochem Biophys 2002;406:65–72.

    Article  PubMed  CAS  Google Scholar 

  • Carmignani M, Volpe AR, Boscolo P, Ripanti G, Giuliano G. Vanadate and cardiovascular system. Ital Med Lav 1995;17:51–9.

    CAS  Google Scholar 

  • Cohen MD, Klein CB, Costa M. Forward mutations and DNA-protein crosslinks induced by ammonium metavanadate in cultured mammalian cells. Mutat Res 1992;269:141–8.

    PubMed  CAS  Google Scholar 

  • Crans DC, Smee JJ, Gaidamauskas E, Yang L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 2004;104:849–902.

    Article  PubMed  CAS  Google Scholar 

  • Ding M, Li J-J, Leonard SS, Ye J-P, et al. Vanadate-induced activation of activator protein-1: role of reactive oxygen species. Carcinogenesis 1999;20:663–8.

    Article  PubMed  CAS  Google Scholar 

  • Elberg G, Li J, Schechter Y. Vanadium activates or inhibits receptor and non-receptor tyrosine kinases in cell-free experiments, depending on its oxidation state. Possible role of endogenous vanadium in controlling cellular protein kinase activity. J Biol Chem 1994;269:9521–7.

    PubMed  CAS  Google Scholar 

  • Evangelou AM. Vanadium in cancer treatment. Crit Rev Oncol Hematol 2002;42:249–65.

    Article  PubMed  Google Scholar 

  • Fantus IG, Kadota S, Deragon G, Foster B, Posner B. Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry 1989;28:8864–71.

    Article  PubMed  CAS  Google Scholar 

  • Goh LB, Spears KJ, Yao D, et al. Endogenous drug transporters in in vitro and in vivo models for the prediction of drug disposition in man. Biochem Pharmacol 2002;64: 1569–78.

    Article  PubMed  CAS  Google Scholar 

  • Gordon JA. Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol 1991;201:477–82.

    PubMed  CAS  Google Scholar 

  • Gresser MJ, Tracey AS. Vanadate as phosphate analogs in biochemistry. In: Chasteen ND, editor. Vanadium in biological systems. Dordrecht: Kluwer; 1990. p. 63–79.

    Google Scholar 

  • Huang C, Zhang Z, Ding M, et al. Vanadate induces p53 transactivation through hydrogen peroxide and causes apoptosis. J Biol Chem 2000;275:32516–22.

    Article  PubMed  CAS  Google Scholar 

  • Huyer G, Liu S, Kelly J, et al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 1997;272:843–51.

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Woodland C, Sarkadi B, Hockmann G, Walker SE, Koren G. Modeling of P-glycoprotein-involved epithelial drug transport in MDCK cells. Am J Physiol 1999;277:F84–96.

    PubMed  CAS  Google Scholar 

  • Josephson L, Cantley LC. Isolation of a potent (Na–K)ATPase inhibitor from striated muscle. Biochemistry 1977;16:4572–8.

    Article  PubMed  CAS  Google Scholar 

  • Kresja CM, Nadler SG, Esselstyn JM, Kavanagh JT, Ledbetter JA, Scieven GL. Role of oxidative stress in the action of vanadium phosphotyrosine phosphatase inhibitors. J Biol Chem 1997;272:11541–9.

    Article  Google Scholar 

  • Léonard A, Gerber GB. Mutagenicity, carcinogenicity and teratogenicity of vanadium compounds. Mutat Res 1994;317:81–8.

    PubMed  Google Scholar 

  • Liochev SI, Fridovich I. Superoxide generated by glutathione reductase initiates a vanadate-dependent free radical chain oxidation of NADH. Arch Biochem Biophys 1992;294:403–6.

    Article  PubMed  CAS  Google Scholar 

  • Lobert S, Isern N, Hennington BS, Correia JJ. Interaction of tubulin and microtubule proteins with vanadate oligomers. Biochemistry 1994;33:6244–52.

    Article  PubMed  CAS  Google Scholar 

  • Morinville A, Maysinger D, Shaver A. From Vanadis to Atropos: vanadium compounds as pharmacological tools in cell death signaling. TIPS 1998;19:452–60.

    PubMed  CAS  Google Scholar 

  • Mukherjee B, Patra B, Mahapatra S, Banerjee P, Tiwari A, Chatterjee M. Vanadium—an element of atypical biological significance. Toxicol Lett 2004;150:135–43.

    Article  PubMed  CAS  Google Scholar 

  • Nechay BR, Nanninga JB, Nechay PSE, et al. Role of vanadium in biology. Fed Proc 1986;45:123–32.

    Google Scholar 

  • Ramos S, Manuel M, Tiago T, et al. Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate. J Inorg Biochem 2006;100:1734–43.

    Article  PubMed  CAS  Google Scholar 

  • Rumjanek VM, Trindade GS, Wagner-Souza K, et al. Multidrug resistance in tumour cells: characterization of the multidrug resistant cell line K562-Lucena 1. An Acad Bras Cienc 2001;73:57–69.

    PubMed  CAS  Google Scholar 

  • Schechter Y, Karlish SJD. Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions. Nature 1980;284:556–8.

    Article  Google Scholar 

  • Schechter Y, Goldwaser I, Mironchik M, Fridkin M, Gefel D. Historic perspective and recent developments on the insulin-like actions of vanadium; toward developing vanadium-based drugs for diabetes. Coord Chem Rev 2003;237:3–11.

    Article  CAS  Google Scholar 

  • Scior T, Guevara-García A, Bernard P, Do QT, Domeyer D, Laufer S. Are vanadium compounds drugable? Structures and effects of antidiabetic vanadium compounds: a critical review. Mini-Reviews Med Chem 2005;5:1–12.

    Google Scholar 

  • Secrist JP, Burns LA, Karnitz L, Koretzky GA, Abraham RT. Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J Biol Chem 1993;268:5886–93.

    PubMed  CAS  Google Scholar 

  • Shi X, Dalal NS. Flavoenzymes reduce vanadium(V) and molecular oxygen and generate hydroxyl radical. Arch Biochem Biophys 1991;289:355–61.

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Dalal NS. Vanadate-mediated hydroxyl radical generation from superoxide radical in the presence of NADH: Haber–Weiss vs Fenton mechanism. Arch Biochem Biophys 1993;307:336–41.

    Article  PubMed  CAS  Google Scholar 

  • Stern A, Yin X, Tsang SS, Davidson A, Moon J. Vanadium as a modulator of cellular regulatory cascades and oncogene expression. Biochem Cell Biol 1993;71:103–12.

    Article  PubMed  CAS  Google Scholar 

  • Thompson KH, Orvig C. Vanadium in diabetes: 100 years from phase 0 to phase I. J Inorg Biochem 2006;100:1925–35.

    Article  PubMed  CAS  Google Scholar 

  • Tiago T, Aureliano M, Gutierrez-Merino C. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin— stimulated myosin ATPase activity. Biochemistry 2004;43:5551–61.

    Article  PubMed  CAS  Google Scholar 

  • Torres M, Forman HJ. Vanadate inhibition of protein tyrosine phosphatases mimics hydrogen peroxide in the activation of the ERK pathway in alveolar macrophages. Ann NY Acad Sci 2002;973:345–8.

    Article  PubMed  CAS  Google Scholar 

  • Trudel S, Pâquet MR, Grinstein S. Mechanism of vanadate-induced activation of tyrosine phosphorylation and of the respiratory burst in HL60 cells. Role of reduced oxygen metabolites. Biochem J 1991;276:611–9.

    PubMed  CAS  Google Scholar 

  • Volberg T, Zick Y, Dror R, et al. The effect of tyrosine-specific protein phosphorylation on the assembly of adherens-type junctions. EMBO J 1992;11:1733–42.

    PubMed  CAS  Google Scholar 

  • Ye J, Ding M, Leonard SS, et al. Vanadate induces apoptosis in epidermal JB6 P+ cells via hydrogen peroxide-mediated reactions. Mol Cell Biochem 1999;202:9–17.

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Davidson AJ, Tsang SS. Vanadate-induced gene expression in mouse C127 cells: roles of oxygen derived active species. Mol Cell Biochem 1992;115:85–96.

    Article  PubMed  CAS  Google Scholar 

  • Zick Y, Sager-Eisenberg R. A combination of H2O2 and vanadate concomitantly stimulates protein tyrosine phosphorylation and polyphosphoinositide breakdown in different cell lines. Biochemistry 1990;29:10240–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. M. Capella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capella, M.A.M., Capella, L.S., Valente, R.C. et al. Vanadate-induced cell death is dissociated from H2O2 generation. Cell Biol Toxicol 23, 413–420 (2007). https://doi.org/10.1007/s10565-007-9003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-007-9003-4

Keywords

Navigation