Skip to main content
Log in

Influence of the coorbital resonance on the rotation of the Trojan satellites of Saturn

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The Cassini spacecraft collects high resolution images of the Saturnian satellites and reveals the surface of these new worlds. Tiscareno et al. succeeded to determine the Epimetheus rotation from the Cassini Imaging Science Subsystem data, initiating studies on the rotation of Epimetheus and its companion Janus (Tiscareno et al., Icarus 204:254–261, 2009; Noyelles, Icarus 207:887–902, 2010; Robutel et al., Icarus 211:758–769, 2011). Especially, Epimetheus is characterized by its horseshoe shape orbit and the presence of the swap has to be introduced explicitly into rotational models. During its journey in the Saturnian system, Cassini spacecraft accumulates the observational data of the other satellites and it will be possible to determine the rotational parameters of several of them. To prepare these future observations, we built rotational models of the coorbital (also called Trojan) satellites Telesto, Calypso, Helene, and Polydeuces, in addition to Janus and Epimetheus. Indeed, Telesto and Calypso orbit around the L 4 and L 5 Lagrange points of Saturn-Tethys while Helene and Polydeuces are coorbital of Dione. The goal of this study is to understand how the departure from the Keplerian motion induced by the perturbations of the coorbital body, influences the rotation of these satellites. To this aim, we introduce explicitly the perturbation in the rotational equations by using the formalism developed by Érdi (Celest Mech 15:367–383, 1977) to represent the coorbital motions, and so we describe the rotational motion of the coorbitals, Janus and Epimetheus included, in compact form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold V.I., Kozlov V., Neistadt A.: Mathematical Aspects of Classical and Celestial Mechanics. Encyclopaedia of Mathematical Sciences. Springer, Berlin (2006)

    Google Scholar 

  • Celletti A., Chierchia L.: Measures of basins of attraction in spin-orbit dynamics. Celest. Mech. Dyn. Astron. 101, 159–170 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Christou A.A., Namouni F., Moreira Morais M.H.: The long term stability of coorbital moons of the satellites of Saturn. I. Conservative case. Icarus 192, 106–116 (2007)

    Article  ADS  Google Scholar 

  • Érdi B.: An asymptotic solution for the trojan case of the plane elliptic restricted problem of three bodies. Celest. Mech. 15, 367–383 (1977)

    Article  ADS  MATH  Google Scholar 

  • Érdi B.: The three-dimensional motion of trojan asteroids. Celest. Mech. 18, 141–161 (1978)

    Article  ADS  MATH  Google Scholar 

  • Giorgini, J.D., Yeomans, D.K., Chamberlin, A.B., Chodas, P.W., Jacobson, R.A., Keesey, M.S., et al.: JPL’s on-line Solar system data service. In: Bulletin of the American Astronomical Society, volume 28 of Bulletin of the American Astronomical Society, p. 1158 (1996)

  • Henrard J., Lemaitre A.: A second fundamental model for resonance. Celest. Mech. 30, 197–218 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Jacobson R.A., Spitale J., Porco C.C., Beurle K., Cooper N.J., Evans M.W., Murray C.D.: Revised orbits of Saturn’s small inner satellites. Astron. J. 135, 261–263 (2008)

    Article  ADS  Google Scholar 

  • Jorba A., Simó C.: On quasiperiodic perturbations of elliptic equilibrium points. SIAM J. Math. Anal. 27(6), 1704–1737 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Kevorkian, J.: The planar motion of a Trojan asteroid. In: Giacaglia, G.E.O. (Ed.) Periodic Orbits Stability and Resonances, pp. 286–303. Reidel (1970)

  • Landau L., Lifchitz E.: Mechanics. Pergamon press, Oxford (1960)

    MATH  Google Scholar 

  • Laskar J.: The chaotic motion of the Solar system. A numerical estimate of the size of the chaotic zone. Icarus 88, 266–291 (1990)

    Article  ADS  Google Scholar 

  • Laskar J.: Introduction to frequency map analysis. In: Simó, C. (ed.) Hamiltonian Systems with Three or More Degrees of Freedom, NATO ASI, pp. 134–150. Kluwer, Dordrecht (1999)

    Google Scholar 

  • Lichtenberg A.J., Lieberman M.A.: Regular and Chaotic Dynamics, Vol 38 of Applied Mathematical Sciences. Springer, Berlin (1992)

    Google Scholar 

  • Morais M.H.M.: Hamiltonian formulation of the secular theory for Trojan-type motion. Astron. Astrophys. 369, 677–689 (2001)

    Article  ADS  MATH  Google Scholar 

  • Murray C.D., Dermott S.F.: Solar System Dynamics. Cambrige University press, Cambridge (1999)

    MATH  Google Scholar 

  • NASA, Jet Propulsion Laboratory, Space Institute: Cassini image N00172886. http://saturn.jpl.nasa.gov/photos/raw/rawimagedetails/index.cfm?imageID=239054 (2011)

  • Noyelles B.: Theory of the rotation of Janus and Epimetheus. Icarus 207, 887–902 (2010)

    Article  ADS  Google Scholar 

  • Peale S.J.: Origin and evolution of the natural satellites. Annu. Rev. Astron. Astrophys. 37, 533 (1999)

    Article  ADS  Google Scholar 

  • Porco C.C., Thomas P.C., Weiss J.W., Richardson D.C.: Saturn’s small inner satellites: clues to their origins. Science 318, 1602–1607 (2007)

    Article  ADS  Google Scholar 

  • Robutel P., Rambaux N., Castillo-Rogez J.: Analytical description of physical librations of Saturnian coorbital satellites Janus and Epimetheus. Icarus 211, 758–769 (2011)

    Article  ADS  Google Scholar 

  • Salo H., Yoder C.F.: The dynamics of coorbital satellite systems. Astron. Astrophys. 205, 309–327 (1988)

    ADS  Google Scholar 

  • Sharma R.K., Rao P.V.S.: Stationary solutions and their characteristic exponents in the restricted three-body problem when the more massive primary is an oblate spheroid. Celest. Mech. 13, 137–149 (1976)

    Article  ADS  MATH  Google Scholar 

  • Thomas P.C.: Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus 208, 395–401 (2010)

    Article  ADS  Google Scholar 

  • Thomas P.C., Davies M.E., Colvin T.R., Oberst J., Schuster P., Neukum G., Carr M.H., McEwen A., Schubert G., Belton M.J.S.: The shape of Io from Galileo Limb measurements. Icarus 135, 175–180 (1998)

    Article  ADS  Google Scholar 

  • Thomas P.C., Burns J.A., Helfenstein P., Squyres S., Veverka J., Porco C., Turtle E.P., McEwen A., Denk T., Giese B., Roatsch T., Johnson T.V., Jacobson R.A.: Shapes of the saturnian icy satellites and their significance. Icarus 190, 573–584 (2007)

    Article  ADS  Google Scholar 

  • Tiscareno M.S., Thomas P.C., Burns J.A.: The rotation of Janus and Epimetheus. Icarus 204, 254–261 (2009)

    Article  ADS  Google Scholar 

  • Vienne A., Duriez L.: TASS1.6: Ephemerides of the major Saturnian satellites. Astron. Astrophys. 297, 588–605 (1995)

    ADS  Google Scholar 

  • Wisdom J.: Rotational dynamics of irregularly shaped natural satellites. Astron. J. 94, 1350–1360 (1987)

    Article  ADS  Google Scholar 

  • Wisdom J.: Spin-orbit secondary resonance dynamics of enceladus. Astron. J. 128, 484–491 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Robutel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robutel, P., Rambaux, N. & El Moutamid, M. Influence of the coorbital resonance on the rotation of the Trojan satellites of Saturn. Celest Mech Dyn Astr 113, 1–22 (2012). https://doi.org/10.1007/s10569-012-9406-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9406-2

Keywords

Navigation