Skip to main content
Log in

Free time minimizers for the three-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Free time minimizers of the action (called “semi-static” solutions by Mañe in International congress on dynamical systems in Montevideo (a tribute to Ricardo Mañé), vol 362, pp 120–131, 1996) play a central role in the theory of weak KAM solutions to the Hamilton–Jacobi equation (Fathi in Weak KAM Theorem in Lagrangian Dynamics Preliminary Version Number 10, 2017). We prove that any solution to Newton’s three-body problem which is asymptotic to Lagrange’s parabolic homothetic solution is eventually a free time minimizer. Conversely, we prove that every free time minimizer tends to Lagrange’s solution, provided the mass ratios lie in a certain large open set of mass ratios. We were inspired by the work of Da Luz and Maderna (Math Proc Camb Philos Soc 156:209–227, 1980) which showed that every free time minimizer for the N-body problem is parabolic and therefore must be asymptotic to the set of central configurations. We exclude being asymptotic to Euler’s central configurations by a second variation argument. Central configurations correspond to rest points for the McGehee blown-up dynamics. The large open set of mass ratios are those for which the linearized dynamics at each Euler rest point has a complex eigenvalue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. From Eq. (17) we get that \(D{\tilde{\nabla }} U\) equals the expression of Eq. (20) plus the term \(\nabla U (s) \otimes s^t M\) which we ignore since \(\langle s, \delta s \rangle _m =0\).

References

  • Barutello, V., Secchi, S.: Morse index properties of colliding solutions to the N-body problem. Ann. I. H. Poincare AN 25, 539–565 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Barutello, V., Hu, Xijun, Portaluri, A., Terracini, S.: An index theory for asymptotic motions under singular potentials (2017). arXiv:1705.01291

  • Chazy, J.: Sur certaines trajectoires du probleme des n corps. Bull. Astron. 35, 321–389 (1918)

    Google Scholar 

  • Chazy, J.: Sur l’allure du mouvement du probléme des trois corps quand le temps croît indéfinement. Ann. Sci. l’E.N.S., 3 série, tome 39, 22–130 (1922)

  • Chenciner, A.: Action minimizing solutions of the Newtonian n-body problem : from homology to symmetry. In: Proceedings of the International Congress of Mathematics, vol. III (Beijing, 2002). Higner Ed. Press, pp. 279–294 (2002)

  • Chenciner, A.: Collisions totales, mouvements complètement paraboliques et réduction des homothéties dans le problème des \(n\) corps, preprint 2003

  • Da Luz, A., Maderna, E.: On free time minimizers for the newtonian \(N\)-body problem. Math. Proc. Camb. Philos. Soc. 156, 209–227 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Devaney, R.: Structural stability of homothetic solutions of the collinear n-body. Celest. Mech. 19, 391–404 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Devaney, R.: Triple collision in the planar isosceles three-body problem. Invent. Math. 60, 249–267 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Euler, L.: De motu rectilineo trium corporum se mutuo attrahentium. Novi Comm. Acad. Sci. Imp. Petrop. 11, 144–151 (1767)

  • Fathi, A.: Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math. 324(9), 1043–1046 (1997)

  • Fathi, A.: Weak KAM Theorem in Lagrangian Dynamics Preliminary Version Number 10, available from Fathi’s website (2017)

  • Hartman, P.: Ordinary Differential Equations. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  • Hirsch, M., Pugh, C., Shub, M.: Invariant manifolds. Springer Lecture Notes in Mathematics, vol. 583 (1977)

  • Lagrange, J. L.: Essai sur le problème des trois corps, Œuvres, vol. 6 (1772)

  • Maderna, E.: On weak KAM theory for \(N\)-body problems. Ergod. Theory Dyn. Syst. 32(2), 1019–1041 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Maderna, E.: Translation invariance of weak KAM solutions for the \(N\)-body problem. Proc. Am. Math. Soc. 41, 2809–2816 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Maderna, E., Venturelli, A.: Globally minimizing parabolic motions in the Newtonian N-body problem. Arch. Ration. Mech. 194, 283–313 (2009). arxiv: 1502.06278

  • Mañé, R.: Lagrangian flows: the dynamics of globally minimizing orbits. In: Ledrappier, F., Lewowicz, J., Newhouse, S. (eds.) International Congress on Dynamical Systems in Montevideo (a tribute to Ricardo Mañé). Pitman Research Notes in Math., vol. 362, pp. 120–131 (1996). Reprinted in Bol. Soc. Bras. Mat. Vol 28, N. 2, (1997) 141–153

  • Marchal, C.: How the minimization of action avoids singularities. Celest. Mech. Dyn. Astron. 83, 325–354 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marchal, C., Saari, D.: On the final evolution of the \(n\)-body problem. JDE 20, 150–186 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • McGehee, R.: Triple collision in the collinear three-body problem. Invent. Math. 27, 191–227 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • McGehee, R.: Singularities in classical celestial mechanics. In: Proceedings of the International Congress of Mathematicians, Helsinki, pp. 827–834 (1978)

  • Moeckel, R.: Orbits of the three-body problem which pass infinitely close to triple collision. Am. J. Math. 103(6), 1323–1341 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Moeckel, R.: Orbits near triple collision in the three-body problem. Indiana Univ. Math. J. 32(2), 221–239 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Moeckel, R.: Chaotic orbits in the three-body problem. In: Rabinowitz, P.H. (ed.) Periodic Solutions of Hamiltonian Systems and Related Topics. D. Reidel, Dordrecht (1987)

    Google Scholar 

  • Moeckel, R.: Chaotic dynamics near triple collision. Arch. Ration. Mech. 107(1), 37–69 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Moeckel, R., Montgomery, R., Venturelli, A.: From brake to syzygy. Arch. Ration. Mech. Anal. 204(3), 1009–1060 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Percino, B., Sánchez Morgado, H.: Busemann functions for the N-body problem. Arch. Ration. Mech. 213(3), 981–991 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, C., Saari, D.: N-body spatial parabolic orbits asymptotic to collinear central configurations. JDE 48, 434–459 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Siegel, C.L.: Der dreierstoss. Ann. Math. 42, 127–168 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  • Siegel, C.L., Moser, J.: Lectures on Celestial Mechanics. Springer, New York (1971)

    Book  MATH  Google Scholar 

  • Simo, C.: Analysis of triple collision in the isosceles problem. In: Classical Mechanics and Dynamical Systems. Marcel Dekker, New York (1980)

  • Yu, G., Hu, X.: Index theory for zero energy solutions of the planar anisotropic Kepler problem (2017). arXiv:1705.05645

Download references

Acknowledgements

Montgomery thankfully acknowledges support by NSF Grant DMS-20030177. Sanchez and Montgomery thankfully acknowledge support of UC-MEXUS Grant CN-16-78. Moeckel acknowledges NSF Grant DMS-1712656

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Montgomery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moeckel, R., Montgomery, R. & Sánchez Morgado, H. Free time minimizers for the three-body problem. Celest Mech Dyn Astr 130, 28 (2018). https://doi.org/10.1007/s10569-018-9823-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9823-y

Keywords

Mathematics Subject Classification

Navigation