Skip to main content
Log in

Symmetries and choreographies in families that bifurcate from the polygonal relative equilibrium of the n-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We use numerical continuation and bifurcation techniques in a boundary value setting to follow Lyapunov families of periodic orbits and subsequently bifurcating families. The Lyapunov families arise from the polygonal equilibrium of n bodies in a rotating frame of reference. When the frequency of a Lyapunov orbit and the frequency of the rotating frame have a rational relationship, then the orbit is also periodic in the inertial frame. We prove that a dense set of Lyapunov orbits, with frequencies satisfying a diophantine equation, correspond to choreographies. We present a sample of the many choreographies that we have determined numerically along the Lyapunov families and along bifurcating families, namely for the cases \(n=3\), 4, and 6–9. We also present numerical results for the case where there is a central body that affects the choreography, but that does not participate in it. Animations of the families and the choreographies can be seen at the link below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. We say that \(q\prime \) is the n-modular inverse of q if \(q\prime q\) is congruent to 1 modulus n.

References

  • Alexander, J., Yorke, J.: Global bifurcations of periodic orbits. Am. J. Math. 100, 263–292 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Barrabés, E., Cors, J.M., Pinyol, C., Soler, J.: Hip-hop solutions of the \(2n\)-body problem. Celest. Mech. Dyn. Astronom. 95(1–4), 55–66 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Barutello, V., Terracini, S.: Action minimizing orbits in the \(n\)-body problem with simple choreography constraint. Nonlinearity 17, 2015–2039 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Barutello, V., Ferrario, D., Terracini, S.: Symmetry groups of the planar 3-body problem and action-mimizing trajectories. Arch. Ration. Mech. Anal. 190, 189–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Calleja, R., Doedel, E., García-Azpeitia, C.: Symmetry-breaking for a restricted \(n\)-body problem in the Maxwell-ring configuration. Eur. Phys. J. ST 225, 2741–2750 (2016)

    Article  Google Scholar 

  • Chen, K.-C.: Binary decompositions for planar n-body problems and symmetric periodic solutions. Arch. Ration. Mech. Anal. 170, 247–276 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Chenciner, A., Féjoz, J.: Unchained polygons and the \(n\)-body problem. Regul. Chaotic Dyn. 14(1), 64–115 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chenciner, A., Montgomery, R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. Math. 152(2), 881–901 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Chenciner, A., Gerver, J., Montgomery, R., Simó, C.: Simple choreographic motions of N bodies A preliminary study. In: Marsden, J.E., Newton, P., Holmes, P., Weinstein, A. (eds.) Geometry, Mechanics, and Dynamics, 60th birthday of J. E. Marsden. Springer, New York (2002)

    Google Scholar 

  • Chenciner, A., Féjoz, J., Montgomery, R.: Rotating eights I: the three \(\Gamma_{i}\) families. Nonlinearity 18, 1407–1424 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Doedel, E., Freire, E., Galán, J., Muñoz-Almaraz, F., Vanderbauwhede, A.: Stability and bifurcations of the figure-8 solution of the three-body problem. Phys. Rev. Lett. 88, 241101 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • Ferrario, D.: Symmetry groups and non-planar collisionless action-minimizing solutions of the three-body problem in three-dimensional space. Arch. Ration. Mech. Anal. 179(3), 389–412 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrario, D., Portaluri, A.: On the dihedral \(n\)-body problem. Nonlinearity 21(6), 1307–1321 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ferrario, D., Terracini, S.: On the existence of collisionless equivariant minimizers for the classical \(n\)-body problem. Invent. Math. 155(2), 305–362 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • García-Azpeitia, C., Ize, J.: Global bifurcation of polygonal relative equilibria for masses, vortices and dNLS oscillators. J. Differ. Equ. 251, 3202–3227 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • García-Azpeitia, C., Ize, J.: Global bifurcation of planar and spatial periodic solutions in the restricted n-body problem. Celest. Mech. Dyn. Astron. 110, 217–227 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • García-Azpeitia, C., Ize, J.: Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the \(n\)-body problem. J. Differ. Equ. 254, 2033–2075 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ize, J., Vignoli, A.: Equivariant Degree Theory. De Gruyter Series in Nonlinear Analysis and Applications 8. Walter de Gruyter, Berlin (2003)

    MATH  Google Scholar 

  • Kapela, T., Simó, C.: Rigorous KAM results around arbitrary periodic orbits for Hamiltonian Systems. Preprint (2017)

  • Kapela, T., Simó, C.: Computer assisted proofs for nonsymmetric planar choreographies and for stability of the Eight. Nonlinearity 20, 1241–1255 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kapela, T., Zgliczynski, P.: An existence of simple choreographies for \(N\)-body problem: a computer assisted proof. Nonlinearity 16, 1899–1918 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marchal, C.: The family P12 of the three-body problem. The simplest family of periodic orbits with twelve symmetries per period. Celest. Mech. Dyn. Astron. 78, 279–298 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marchal, C.: How the method of minimization of action avoids singularities. Celest. Mech. Dyn. Astron. 83, 325–353 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Meyer, K., Schmidt, D.: Librations of central configurations and braided saturn rings. Celest. Mech. Dyn. Astron. 55(3), 289–303 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Moeckel, R.: Linear stability of relative equilibria with a dominant mass. J. Dyn. Differ. Equ. 6, 37–51 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Montaldi, J., Steckles, K.: Classification of symmetry groups for planar n-body choreographies. Forum of Mathematics, Sigma 1 (2013)

  • Moore, C.: Braids in classical gravity. Phys. Rev. Lett. 70, 3675–3679 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Muñoz-Almaraz, F., Freire, E., Galán, J., Doedel, E., Vanderbauwhede, A.: Continuation of periodic orbits in conservative and Hamiltonian systems. Phys. D 181, 1–38 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts, G.E.: Linear stability in the \(1+n\)-non relative equilibrium. In: Delgado, J. (ed), Hamiltonian Systems and Celestial Mechanics. HAMSYS-98. Proceedings of the 3rd International Symposium, World Sci. Monogr. Ser. Math. 6. World Scientific, pp. 303–330 (2000)

  • Simó, C.: New families of solutions in N-body problems. In: European Congress of Mathematics. Springer Nature, pp. 101–115 (2001)

  • Terracini, S., Venturelli, A.: Symmetric trajectories for the \(2n\)-body problem with equal masses. Arch. Ration. Mech. Anal. 184(3), 465–493 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Vanderbei, R., Kolemen, E.: Linear stability of ring systems. Astron. J. 133, 656–664 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Montgomery, J. Montaldi, D. Ayala, and L. García-Naranjo for many interesting discussions. We also acknowledge the assistance of Ramiro Chavez Tovar with the preparation of figures and animations. This research was also supported by NSERC (Canada) Grant N00138. R. C. was partially supported by PAPIIT Project IA102818.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Calleja.

Additional information

http://mym.iimas.unam.mx/renato/choreographies/index.html

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calleja, R., Doedel, E. & García-Azpeitia, C. Symmetries and choreographies in families that bifurcate from the polygonal relative equilibrium of the n-body problem. Celest Mech Dyn Astr 130, 48 (2018). https://doi.org/10.1007/s10569-018-9841-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9841-9

Keywords

Navigation