Skip to main content
Log in

Nano-enabled microtechnology: polysulfone nanocomposites incorporating cellulose nanocrystals

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Microchannel devices hold the potential to transform many separation processes. This preliminary study investigated the feasibility of incorporating cellulose nanocrystals (CNXLs) into polysulfone, a commonly used ultrafiltration membrane polymer. Incorporating CNXLs into non-water soluble polymers without aggregation has been problematic. A solvent exchange process was developed that successfully transferred an aqueous CNXL dispersion into the organic solvent N-methylpyrrolidone (NMP), which is a solvent for polysulfone (PSf). Films were prepared from the solution of PSf in NMP with dispersed CNXLs by a phase inversion process. Films were then examined by scanning electron microscopy and tested for their transport and mechanical properties. The interaction between the polymer matrix and the CNXL filler was studied by means of thermogravimetric analysis (TGA), which suggested a close interaction between the polymer and filler at the 2% filler loading. The tensile modulus showed a large increase beyond 1% filler loading, which could be due to a percolation effect. The water vapor transport rate increased with increase in filler loading. Agglomeration of the CNXLs seemed to be taking place at filler loadings >7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts P et al (2000a) Polysulfone-aerosil composite membranes Part 2. The influence of the addition of aerosil on the skin characteristics and membrane properties. J Membrane Sci 178:1–11

    Article  CAS  Google Scholar 

  • Aerts P et al (2000b) Polysulfone-aerosil composite membranes Part 2. The influence of the addition of aerosil on the skin characteristics and membrane properties. J Membrane Sci 178(1–2):1–11

    Article  CAS  Google Scholar 

  • Aerts P, Van Hoof E, Leysen R, Vankelecom IFJ, Jacobs PA (2000c) Polysulfone-aerosil composite membranes Part 1. The influence of the addition of Aerosil on the formation process and membrane morphology. J Membrane Sci 176(1):63–73

    Article  CAS  Google Scholar 

  • Aminabhavi TM, Mallikarjuna NN (2004) Polymeric membranes: polymeric nanocomposites: barrier properties and membrane applications. Polymer News 29(6):193–195

    Article  CAS  Google Scholar 

  • Baker RW (2000) Membrane technology and applications. John Wiley & Sons, New York, NY

    Google Scholar 

  • Battista OA (1975) Microcrystal polymer science. McGraw-Hill, New York, NY

    Google Scholar 

  • Drufresne A (2006) comparing the mechanical properties of high performance polymer nanocomposites from biologicial sources. J Nanosci Nanotechnol 6:322–330

    Google Scholar 

  • Garboczi EJ, Snyder KA, Douglas JF (1995) Geometrical percolation threshold of overlapping ellipsoids. Phys Rev E 52(1):819–828

    Article  CAS  Google Scholar 

  • Genne I, Kuypers S, Leysen R (1996) Effect of addition of ZrO2 to polysulfone based UF membranes. J Membrane Sci 113:343–350

    Article  CAS  Google Scholar 

  • Hennepe HJCt, Bargeman D, Mulder MHV, Smolders CA (1987) Zeolite-filled silicone rubber membranes, Part 1. Membrane preparation and pervaporation results. J Membrane Sci 35(1):39–55

    Article  Google Scholar 

  • Hill RJ (2006a) Diffusive permeability and selectivity of nanocomposite membranes. Industrial & Engineering Chemistry Research ACS ASAP DOI 10.1021/ie0512035: ACS ASAP

  • Hill RJ (2006b) Reverse-selective diffusion in nanocomposite membranes. Phys Rev Lett 96(21): 216001/1–216001/4

    Article  CAS  Google Scholar 

  • Hu YTV, Hiltner A, Baer E (2001) Measurement of water vapor transmission rate in highly permeable films. J Appl Polym Sci 81(7):1624–1633

    Article  CAS  Google Scholar 

  • Karthikeyan CS et al (2005) Polymer nanocomposite membranes for DMFC application. J Membrane Sci 254(1–2):139–146

    Article  CAS  Google Scholar 

  • Kelarakis A et al (2005) Rheological study of carbon nanofiber induced physical gelation in polyolefin nanocomposite melt. Polymer 46(25):11591–11599

    Article  CAS  Google Scholar 

  • Liang CC (1973) Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes. J Electrochem Soc 120:1289–1292

    Article  CAS  Google Scholar 

  • Liu Q, De Kee D (2005) Modeling of diffusion through nanocomposite membranes. J Non-Newtonian Fluid Mech 131(1–3):32–43

    Article  CAS  Google Scholar 

  • Maier J (1995) Ionic conduction in space charge regions. Prog Solid State Chem 23:171–263

    Article  CAS  Google Scholar 

  • Marks RE (1967) Cell wall mechanics of tracheids. Yale Univ. Press, New Haven, CT

    Google Scholar 

  • Martin PM, Matson DW, Bennett WD (1999a) Laminated plastic microfluidic components for biological and chemical systems. J Vac Sci Technol A 17:2264–2269

    Article  CAS  Google Scholar 

  • Martin PM, Matson DW, Bennett WD (1999b) Microfabrication methods for microchannel reactors and separations systems. Chem Eng Commun 173:245–254

    Article  CAS  Google Scholar 

  • Merkel TC et al (2002) Ultrapermeable reverse-selective nanocomposite membranes. Science 296:519–522

    Article  CAS  Google Scholar 

  • Naidu BVK, Sairam M, Raju KVSN, Aminabhavi TM (2005) Pervaporation separation of water + isopropanol mixtures using novel nanocomposite membranes of poly(vinyl alcohol) and polyaniline. J Membrane Sci 260(1–2):142–155

    CAS  Google Scholar 

  • Noorani S, Simonsen J, Atre S (2006) Polysulfone nanocomposites. In: Oksman K, Sain M (eds) Cellulose nanocomposites: processing, characterization and properties, ACS Symposium Series No. 938. American Chemical Society, Washington, D.C

    Google Scholar 

  • Revol J-F, Giasson J, Guo J-X, Hanley SJ, Harkness B, Marchessault RH, Gray DG (1993) In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose-based chiral nematic structures, Ellis Horwood, New York, pp 115–122

  • Roman M, Winter WT (2005) Cellulose nanocrystals for thermoplastic reinforcement: effect of filler surface chemistry on composite properties. Abstracts of Papers, 229th ACS National Meeting, San Diego, CA, United States, March 13–17, 2005: CELL-214

  • Sacca A et al (2005) Nafion-TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs). J Power Sources 152:16–21

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Sanchez J-Y, El Kissi N, Dufresne A (2004) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37(4):1386–1393

    Article  CAS  Google Scholar 

  • Solvay (2007) Udel polysulfone product data, Solvay Advanced Polymers, http://www.solvaymembranes.com/static/wma/pdf/1/2/6/P1700nt.pdf, accessed 2007

  • Sturcova A, Davies GR, Eichhorn SJ (2005) The elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  CAS  Google Scholar 

  • Surve M, Pryamitsyn V, Ganesan V (2006) Polymer-bridged gels of nanoparticles in solutions of adsorbing polymers. J Chem Phys 125(6): 064903/1–064903/12

    Article  CAS  Google Scholar 

  • Takahashi T (1989) Recent trends in high conductivity solid electrolytes and their applications: an overview. In: Laskar AL, Chandra S (eds) Superionic solids solid electrolytes: recent trends, Academic Publishers, Boston, MA, pp 1–41

    Google Scholar 

  • Urval R (2004) Powder injection molding of multi-scale devices. M.S. Thesis, Oregon State University, Corvallis, OR

  • Wara NM, Francis LF, Velamakanni BV (1995) Addition of alumina to cellulose acetate membranes. J Membrane Sci 104:43–49

    Article  CAS  Google Scholar 

  • Ward K, Ott E, Spurlin HM, Grafflin MW (1954) Occurence of Cellulose. Interscience Publishers Part I: 9–27

  • Wegeng RS, Drost MK, Brenchley DL (1999) Process intensification through miniaturization or micro thermal and chemical systems in the 21st Century, 3rd International Conference on Microreaction Technology, Frankfurt, Germany

  • Yan L, Li YS, Xiang CB (2005) Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer 46(18):7701–7706

    Article  CAS  Google Scholar 

  • Zhong J et al (2005) Translation and rotation of penetrants in ultrapermeable nanocomposite membrane of poly(2,2–bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene) and Fumed Silica. Macromolecules 38(9):3754–3764

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2003-35103-13711.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Simonsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noorani, S., Simonsen, J. & Atre, S. Nano-enabled microtechnology: polysulfone nanocomposites incorporating cellulose nanocrystals. Cellulose 14, 577–584 (2007). https://doi.org/10.1007/s10570-007-9119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-007-9119-y

Keywords

Navigation