Skip to main content
Log in

Chemical surface modifications of microfibrillated cellulose

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Microfibrillated cellulose (MFC) was prepared by disintegration of bleached softwood sulphite pulp through mechanical homogenization. The surface of the MFC was modified using different chemical treatments, using reactions both in aqueous- and organic solvents. The modified MFC was characterized with fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Epoxy functionality was introduced onto the MFC surface by oxidation with cerium (IV) followed by grafting of glycidyl methacrylate. The length of the polymer chains could be varied by regulating the amount of glycidyl methacrylate added. Positive charge was introduced to the MFC surface through grafting of hexamethylene diisocyanate, followed by reaction with the amines. Succinic and maleic acid groups could be introduced directly onto the MFC surface as a monolayer by a reaction between the corresponding anhydrides and the surface hydroxyl groups of the MFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CDI:

Carbonyl diimidazole

DABCO:

1,4-Diazabicyclo[2.2.2]octane

DEAPA:

3-(Diethylamino) propylamine

FTIR:

Fourier transform infrared spectroscopy

GMA:

Glycidyl methacrylate

HMDI:

Hexamethylene diisocyanate

MFC:

Microfibrillated cellulose

SEC:

Size exclusion chromatography

THF:

Tetrahydrofuran

XPS:

X-ray photoelectron spectroscopy

TEM:

Transmission electron microscopy

References

  • Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13(6):665–677

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316

    Article  CAS  Google Scholar 

  • Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Composites A 36:1486–1493

    Article  CAS  Google Scholar 

  • Cai X, Riedl B, Ait-Kadi A (2003) Effect of Surface-Grafted Ionic Groups on the Performance of Cellulose-Fiber-Reinforced Thermoplastic Composites. J Pol Sci B Polym Phys 41:2022–2032

    Article  CAS  Google Scholar 

  • Cash MJ, Chan AN, Conner HT, Cowan PJ, Gelman RA, Lusvardi KM, Thompson SA, Tise FP (1999) Derivatized microfibrillar polysaccharide. US Patent 6,602,994

  • Cavaillè JY, Chanzy H, Fleury E, Sassi J-F (1997) Surface-modified cellulose microfibrils, method for making the same, and use thereof as a filler in composite materials. US Patent 6,117,545

  • Choi SW, Jo SM, Lee WS, Kim Y-R (2003) An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv Mater 15:2027–2031

    Article  CAS  Google Scholar 

  • Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651

    Article  Google Scholar 

  • Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Isogai A (2001) Chemical modification of cellulose. In: Hon D, Shiraishi N (eds) Wood and cellulosic chemistry, 2nd edn. Chapter 14:599–625

  • Johansson L-S, Campbell JM, Koljonen K, Stenius P (1999) Evaluation of surface lignin on cellulose fibers with XPS. Appl Surf Sci 144–145:92–95

    Article  Google Scholar 

  • Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149

    Article  CAS  Google Scholar 

  • Ladouce L, Fleury E, Gousse C, Cantiani R, Chanzy H, Excoffier G (2000) Cellulose microfibrils with modified surface, preparation method and use thereof. US Patent 6,703,497

  • Larsson PT, Wickholm K, Iversen T (1997) CP/MAS 13C-NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25

    Article  CAS  Google Scholar 

  • Li D, Xia Y (2004) Electrospinning of nanofibres: reinventing the wheel? Adv Mater 16:1151–1170

    Article  CAS  Google Scholar 

  • Lindström T, Wågberg L (2002) An overview of some possibilities to modify fibre surfaces for tailoring composite interfaces. Proceedings of 23rd Riso Int Symp Mat Sci Roskilde, pp 35–59

  • Malainine ME, Mahrouz M, Dufresne A (2005) Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Compos Sci Technol 65:1520–1526

    Article  CAS  Google Scholar 

  • Mishra A, Srinivasan R, Gupta R (2003) P. psyllium-g-polyacrylonitrile: synthesis and characterization. Colloid Polym Sci 281:187–189

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 78:547–552

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159

    Article  CAS  Google Scholar 

  • Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80:93–97

    Article  CAS  Google Scholar 

  • Sekkar V, Gopalakrishnan S, Ambika Devi K (2003) Studies on allophanate-urethane networks based on hydroxyl terminated polybutadiene: effect of isocyanate type on the network characteristics. Eur Polym J 39:1281–1290

    Article  CAS  Google Scholar 

  • Thomas H, Heine E, Wollseifen R, Cimpeanu C, Möller M (2005) Nanofibers from natural and inorganic polymers via electrospinning. Int Nonwovens J 14:12–18

    CAS  Google Scholar 

  • Toledano-Thompson T, Loría-Bastarrachea MI, Aguilar-Vega MJ (2005) Characterization of henequen cellulose microfibers treated with an epoxide and grafted with poly(acrylic acid). Carbohydr Polym 62:67–73

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Wu J, Yu D, Chan C-M, Kim J, Mai Y-W (2000) Effect of fiber pretreatment condition on the interfacial strength and mechanical properties of wood fiber/PP composites. J Appl Pol Sci 76:1000–1010

    Article  CAS  Google Scholar 

  • Yuan J, Zhang J, Zang X, Shen J, Lin S (2003) Improvement of blood compability on cellulose membrane surface by grafting betaines. Colloids Surf B Biointerfaces 30:147–155

    Article  CAS  Google Scholar 

  • Zhang J, Yuan J, Yuan Y, Shen J, Lin S (2003) Chemical modification of cellulose membranes with sulfo ammonium zwitterionic vinyl monomer to improve hemocompatibility. Colloids Surf B Biointerfaces 30:249–257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the NANOMAT research programme of the Research Council of Norway. Södra Cell, Borregaard, Akzo Nobel and Domsjø Fabriker are also gratefully acknowledged for financial support. Leena-Sisko Johansson at the Laboratory of Forest Products Chemistry, Helsinki University of Technology in Otaniemi, Espoo, Finland is acknowledged for the XPS analysis. Roberta Hofman, Akzo Nobel Functional Chemicals, is thanked for help with the SEC analysis. The Norwegian Paper and Fibre Research Institute is thanked for providing the MFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Stenstad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenstad, P., Andresen, M., Tanem, B.S. et al. Chemical surface modifications of microfibrillated cellulose. Cellulose 15, 35–45 (2008). https://doi.org/10.1007/s10570-007-9143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-007-9143-y

Keywords

Navigation