Skip to main content
Log in

The structure of the complex of cellulose I with ethylenediamine by X-ray crystallography and cross-polarization/magic angle spinning 13C nuclear magnetic resonance

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

X-ray crystallographic and cross-polarization/magic angle spinning 13C nuclear magnetic resonance techniques have been used to study an ethylenediamine (EDA)-cellulose I complex, a transient structure in the cellulose I to cellulose IIII conversion. The crystal structure (space group P21; a = 4.546 Å, b = 11.330 Å, c = 10.368 Å and γ = 94.017°) corresponds to a one-chain unit cell with one glucosyl residue in the asymmetric unit, a gt conformation for the hydroxymethyl group, and one EDA molecule per glucosyl residue. Unusually, there are no O–H···O hydrogen bonds between the cellulose chains; the chains are arranged in hydrophobic stacks, stabilized by hydrogen bonds to the amine groups of bridging EDA molecules. This new structure is an example of a complex in which the cellulose chains are isolated from each other, and provides a number of insights into the structural pathway followed during the conversion of cellulose I to cellulose IIII through EDA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native cellulose. Solid State Nucl Magn Reson 15:1–19

    Article  CAS  Google Scholar 

  • Chanzy H, Henrissat B, Vuong R, Revol JF (1986) Structural changes of cellulose crystals during the reversible transformation cellulose I–cellulose III in Valonia. Holzforschung 40:25–30

    CAS  Google Scholar 

  • Chanzy H, Henrissat B, Vincendon M, Tanner S, Belton PS (1987) Solid-state C13 NMR and electron microscopy study on the reversible cellulose I–cellulose IIII transformation in Valonia. Carbohydr Res 160:1–11

    Article  CAS  Google Scholar 

  • Clark GL, Parker EA (1937) An X-ray diffraction study of the action of liquid ammonia on cellulose and its derivatives. J Phys Chem 41:777–786

    Article  CAS  Google Scholar 

  • Creely JJ, Segal L, Loeb L (1959) An X-ray study of new cellulose complexes with diamines containing 3, 5, 6, 7, and 8 carbon atoms. J Polym Sci 36:205–214

    Article  CAS  Google Scholar 

  • Cremer D, Pople J (1975) General definition of ring puckering coordinates. J Am Chem Soc 97:1354–1358

    Article  CAS  Google Scholar 

  • da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425

    Article  CAS  Google Scholar 

  • Davis WE, Barry AJ, Peterson FC, King AJ (1943) X-ray studies of reactions of cellulose in non-aqueous systems. II. Interaction of cellulose and primary amines. J Am Chem Soc 65:1294–1299

    Article  CAS  Google Scholar 

  • Detroy RW, Lindenfelser LA, Sommer S, Orton WL (1981) Bioconversion of wheat straw to ethanol: chemical modification, enzymatic hydrolysis, and fermentation. Biotechnol Bioeng 23:1527–1536

    Article  CAS  Google Scholar 

  • Dudley RL, Fyfe CA, Stephenson PJ, Deslandes Y, Hamer GK, Marchessault RH (1983) High resolution 13C Cp/MAS spectra of solid cellulose oligomers and the structure of cellulose II. J Am Chem Soc 105:2469–2472

    Article  CAS  Google Scholar 

  • French AD, Howley PD (1989) Computer models of cellulose. In: Schuerch C (ed) Cellulose and wood, chemistry and technology, Wiley, New-York, p 164

    Google Scholar 

  • Henrissat B, Marchessault RH, Taylor MG, Chanzy H (1987) A C13 NMR study of the cellulose I ethylenediamine complex. Polym Commun 28:113–115

    CAS  Google Scholar 

  • Horii F, Yamamoto H, Kitamaru R, Tanahashi M, Higuchi T (1987) Transformation of native cellulose crystals induced by saturated steam at high temperatures. Macromolecules 20:2946–2949

    Article  CAS  Google Scholar 

  • Igarashi K, Wada M, Samejima M (2007) Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase. FEBS J 274:1785–1792

    Article  CAS  Google Scholar 

  • Imai T, Sugiyama J (1998) Nanodomains of I-alpha and I-beta cellulose in algal microfibrils. Macromolecules 31:6275–6279

    Article  CAS  Google Scholar 

  • Jahan MS, Farouqui FI (2000) Pulping of whole jute plant (Corchorus capsularis) by soda-amine process. Holzforschung 54:625–630

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze U, Wagenknecht W (1998) Activated cellulose. In: Comprehensive cellulose chemistry, Vol I. Wiley, New York, pp 152–154

  • Klenkova NI (1967) Reaction of cellulose with amines as a prospective means of activating cellulose and increasing its reactivity in the synthesis of various derivatives. Zh Prikl Khim 40:2191–2208

    CAS  Google Scholar 

  • Kono H, Erata T, Takai M (2003) Determination of the through-bond carbon–carbon and carbon-proton connectivities of the native celluloses in the solid state. Macromolecules 36:5131–5138

    Article  CAS  Google Scholar 

  • Kono H, Numata Y, Erata T, Takai M (2004) 13C and 1H resonance assignment of mercerized cellulose II by two-dimensional MAS NMR spectroscopies. Macromolecules 37:5310–5316

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of cellulose II at 1 Å resolution. Biomacromolecules 2:410–416

    Article  CAS  Google Scholar 

  • Lee DM, Burnfield KE, Blackwell J (1984) Structure of a cellulose I ethylenediamine complex. Biopolymers 23:111–126

    Article  CAS  Google Scholar 

  • Lewin M, Rau RO, Sello SB (1974) Role of liquid ammonia in functional textile finishes. Text Res J 44:680–686

    Article  CAS  Google Scholar 

  • Montanari S, Rountani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kuga S, Wada M, Okano T (1997) Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30:6395–6397

    Article  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure ad hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Numata Y, Kono H, Kawano S, Erata T, Takai MJ (2003) Cross-polarization/magic-angle spinning 13C nuclear magnetic resonance study of cellulose I-ethylenediamine complex. Biosci Bioeng 96:461–466

    Article  CAS  Google Scholar 

  • Pandey SN, Nair P (1975) Study of the effect of anhydrous liquid ammonia treatment on cellulose. Text Res J 45:648–653

    Article  CAS  Google Scholar 

  • Peralta-Inga Z, Johnson GP, Dowd MK, Randleman JA, Stevens ED, French AD (2002) The crystal structure of the alpha-cellobiose.NaI.H2O complex in the context of related structures and conformational analysis. Carbohydr Res 337:851–861

    Article  CAS  Google Scholar 

  • Porro F, Bedue O, Chanzy H, Heux L (2007) Solid-state C-13 NMR study of Na-cellulose complexes. Biomacromolecules 8:2586–2593

    Article  CAS  Google Scholar 

  • Sheldrick GM (1997) SHELX-97, a program for the refinement of single-crystal diffraction data. University of Gottingen, Gottingen

    Google Scholar 

  • Sugiyama J, Okano T, Yamamoto H, Horii FJ (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23:3196–3198

    Article  CAS  Google Scholar 

  • Sugiyama J, Persson J, Chanzy H (1991a) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991b) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  • Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Biosour Technol 96:2014

    Article  CAS  Google Scholar 

  • Umikalsom MS, Ariff AB, Zulkifli HS, Tong CC, Hassan MA, Karim MIA (1997) The treatment of oil palm empty fruit bunch fibre for subsequent use as substrate for cellulase production by Chaetomium globosum Kunze. Bioresour Technol 62:1–9

    Article  CAS  Google Scholar 

  • Wada M (2001) In situ observation of the crystalline transformation from cellulose IIII to Iβ. Macromolecules 34:3271–3275

    Article  CAS  Google Scholar 

  • Wada M, Heux L, Isogai A, Nishiyama Y, Chanzy H, Sugiyama J (2001) Improved structural data of cellulose IIII prepared in supercritical ammonia. Macromolecules 34:1237–1243

    Article  CAS  Google Scholar 

  • Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 23:8548–8555

    Article  Google Scholar 

  • Wada M, Nishiyama Y, Langan P (2006) X-ray structure of ammonia-cellulose I: new insights into the conversion of cellulose I to cellulose IIII. Macromolecules 39:2947–2952

    Article  CAS  Google Scholar 

  • Wada M, Kwon GJ, Nishiyama Y (2008) Structure and thermal behavior of a cellulose I-ethylenediamine complex. Biomacromolecules 9:2898–2904

    Article  CAS  Google Scholar 

  • Xiao M, Frey MW (2007) The role of salt on cellulose dissolution in ethylene diamine/salt solvent systems. Cellulose 14:225–234

    Article  CAS  Google Scholar 

  • Yamamoto H, Horii F (1993) CP/MAS 13C NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures. Macromolecules 26:1313–1317

    Article  CAS  Google Scholar 

  • Yamamoto H, Horii F, Odani H (1989) Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures. Macromolecules 22:4130–4132

    Article  CAS  Google Scholar 

  • Yanai Y, Shimizu Y (2006) The liquid ammonia treatment of cotton fibers—comparison and combination with mercerization using a practical unit. Sen’i Gakkaishi 62:100–105

    Article  CAS  Google Scholar 

  • Zargarian K, Aravamuthan R, April GC (1988) Organosolve delignification of southern pine—an alternative pulping process. Chem Eng Technol 11:195–199

    Article  Google Scholar 

Download references

Acknowledgments

We thank beam line BL38B1 at the SPring-8, Japan, for use of facilities. MW was supported by a Grant-in-Aid for Scientific Research (18780131). This study was partly funded by the French Agence Nationale de la Recherche. PL was supported in part by the Office of Biological and Environmental Research of the Department of Energy, a grant from the National Institute of Medical Sciences of the National Institutes of Health (1R01GM071939-01), and a Laboratory Directed Research and Development grant from Los Alamos National Laboratory (20080001DR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Langan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wada, M., Heux, L., Nishiyama, Y. et al. The structure of the complex of cellulose I with ethylenediamine by X-ray crystallography and cross-polarization/magic angle spinning 13C nuclear magnetic resonance. Cellulose 16, 943–957 (2009). https://doi.org/10.1007/s10570-009-9338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9338-5

Keywords

Navigation