Skip to main content
Log in

Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose is a linear 1,4-β-glucan polymer where the units are able to form highly ordered structures, as a result of extensive interaction through intra- and intermolecular hydrogen bonding of the three hydroxyl groups in each cellulose unit. Alkali has a substantial influence on morphological, molecular and supramolecular properties of cellulose II polymer fibres causing changes in crystallinity. These physical changes were observed herein using ATR-FTIR spectroscopy, following continuous treatment of the cellulose II fabrics with aqueous sodium hydroxide solution under varying condition parameters. Post-treatment, maxima for total crystallinity index and lateral order index, and minima for hydrogen bond intensity, were observed at concentrations of 3.3 and 4.5 mol dm−3 NaOH, when treated at 25 °C and 40 °C, respectively. Under these treatment conditions, it is proposed that maximum molecular reorganisation occurs in the amorphous and quasi-crystalline phases of the cellulose II polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albrecht W, Reintjes M, Wulfhorst B (1997) Lyocell fibers. Chem Fibers Int 47:298–304

    Google Scholar 

  • Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234

    Article  CAS  Google Scholar 

  • Christy AA, Ozaki Y, Gregoriou VG (2001) Wilson and Wilson’s comprehensive analytical chemistry. Vol.35, modern Fourier transform infrared spectroscopy. Elsevier, Amsterdam; London

    Google Scholar 

  • Colom X, Carrillo F (2002) Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polym J 38:2225–2230

    Article  CAS  Google Scholar 

  • Goswami P, Blackburn RS, El-Dessouky HM, Taylor J, White P (2009) Effects of sodium hydroxide pre-treatment on the optical and structural properties of lyocell. Eur Polym J 45:455–465

    Article  CAS  Google Scholar 

  • Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry: functionalisation of cellulose. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Higgins HG, Goldsmith V, McKenzie AW (1958) The reactivity of cellulose. 3. Acid hydrolysis of eucalypt alpha-cellulose in the intermediate molecular weight range. J Polym Sci 32(124):57–74

    Article  CAS  Google Scholar 

  • Hofmann D, Fink HP, Philipp B (1989) Lateral crytsallite size and lattice-distortions in cellulose-ii samples of different origin. Polymer 30:237–241

    Article  CAS  Google Scholar 

  • Hurtubise FG, Krässig H (1960) Classification of fine structural characteristics in cellulose by infrared spectroscopy–use of potassium bromide pellet technique. Anal Chem 32(2):177–181

    Article  CAS  Google Scholar 

  • Ibbett R, Taylor J, Schuster KC, Cox M (2008) Interpretation of relaxation and swelling phenomena in lyocell regenerated cellulosic fibres and textiles associated with the uptake of solutions of sodium hydroxide. Cellulose 15:393–406

    Article  CAS  Google Scholar 

  • Jaturapiree A, Manian AP, Bechtold T (2006) Sorption studies on regenerated cellulosic fibers in salt-alkali mixtures. Cellulose 13:647–654

    Article  CAS  Google Scholar 

  • Kamide K, Okajima K, Matsui T, Kowsaka K (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and C-13 NMR. Polym J 16:857–866

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:2–37

    Article  Google Scholar 

  • Kolpak FJ, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9:273–278

    Article  CAS  Google Scholar 

  • Kolpak FJ, Weih M, Blackwell J (1978) Mercerization of cellulose I. Determination of structure of mercerized cotton. Polymer 19:123–131

    Article  CAS  Google Scholar 

  • Kondo T, Sawatari C (1996) A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 31:393–399

    Article  Google Scholar 

  • Kono H, Numata Y (2004) Two-dimensional spin-exchange solid-state NMR study of the crystal structure of cellulose II. Polymer 45:4541–4547

    Article  CAS  Google Scholar 

  • Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach Science Publishers S. A, Yverdon

    Google Scholar 

  • Kreze T, Malej S (2003) Structural characteristics of new and conventional regenerated cellulosic fibers. Tex Res J 73:675–684

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946

    Article  CAS  Google Scholar 

  • Lee SA (1979) Applied infrared spectroscopy: fundamentals, techniques, and analytical problem-solving. Wiley, New York

    Google Scholar 

  • Lenz J, Schurz J, Wrentscur E (1993) Properties and structure of solvent-spun and viscose-type fibres in the swollen state. Colloid Polym Sci 271:460–468

    Article  CAS  Google Scholar 

  • Liang CY, Marchessault RH (1959a) Infrared spectra of crystalline polysaccharides. 1. Hydrogen bonds in native celluloses. J Polym Sci 37:385–395

    Article  CAS  Google Scholar 

  • Liang CY, Marchessault RH (1959b) Infrared spectra of crystalline polysaccharides. 2. Native celluloses in the region from 640 to 1700 cm−1. J Polym Sci 39:269–278

    Article  CAS  Google Scholar 

  • Loubinoux D, Chaunis S (1987) An experimental approach to spinning new cellulose fibers with N-methylmorpholine-oxide as a solvent. Text Res J 57:61–65

    Article  CAS  Google Scholar 

  • Manian AP, Abu-Rous M, Lenninger M, Roeder T, Schuster KC, Bechtold T (2008) The influence of alkali pretreatments in lyocell resin finishing–fiber structure. Carbohydr Polym 71:664–671

    Article  CAS  Google Scholar 

  • Marchessault RH, Liang CY (1960) Infrared spectra of crystalline polysaccharides. 3. Mercerized cellulose. J Polym Sci 43:71–84

    Article  CAS  Google Scholar 

  • Mortimer SA, Peguy AA (1996) The formation of structure in the spinning and coagulation of lyocell fibres. Cellulose Chem Technol 30:117–132

    CAS  Google Scholar 

  • Nada AAMA, Kamel S, El-Sakhawy M (2000) Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polym Degrad Stabil 70:347–355

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964a) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8(3):1311–1324

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964b) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8(3):1325–1341

    Article  CAS  Google Scholar 

  • O’Connor RT, DuPré EF, Mitcham D (1958) Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons: Part I: physical and crystalline modifications and oxidation. Text Res J 28(5):382–392

    Article  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340(15):2376–2391

    Article  CAS  Google Scholar 

  • Okano T, Sarko A (1984) Mercerization of cellulose. 1. X-ray diffraction evidence for intermediate structures. J Appl Polym Sci 29:4175–4182

    Article  CAS  Google Scholar 

  • Okano T, Sarko A (1985) Mercerization of cellulose. 2. Alkali cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332

    Article  CAS  Google Scholar 

  • Pan DH, Philip A, Hoff WD, Mathies RA (2004) Time-resolved resonance Raman structural studies of the pB’ intermediate in the photocycle of photoactive yellow protein. Biophysical J 86:2374–2382

    Article  CAS  Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Siroky J, Manian AP, Siroka B, Abu-Rous M, Schlangen J, Blackburn RS, Bechtold T (2009) Alkali treatments of lyocell in continuous processes. I. Effects of temperature and alkali concentration on the treatments of plain woven fabrics. J Appl Polym Sci 113:3646–3655

    Article  CAS  Google Scholar 

  • Wakelin JH, Virgin HS, Crystal E (1959) Development and comparison of 2 X-ray methods for determining the crystallinity of cotton cellulose. J Appl Phys 30(11):1654–1662

    Article  CAS  Google Scholar 

  • Warwicker JO (1969) Swelling of cotton in alkalis and acids. J Appl Polym Sci 13:41–54

    Article  CAS  Google Scholar 

  • White P, Hayhurst M, Taylor J, Slater A (2005) Lyocell fibres. In: Blackburn RS (ed) Biodegradable and sustainable fibres. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  • Zhu Y, Ren X, Wu C (2004) Influence of alkali treatment on the structure of newcell fibers. J Appl Polym Sci 93:1731–1735

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank The University of Leeds and Lenzing AG for the provision of a scholarship to Mr. Široký. The authors would also like to acknowledge the assistance of Dr. Avinash Manian, Dr. Barbora Široká, and Mr. Les Johnson for help with the experimental work and also for fruitful discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Blackburn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Široký, J., Blackburn, R.S., Bechtold, T. et al. Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17, 103–115 (2010). https://doi.org/10.1007/s10570-009-9378-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9378-x

Keywords

Navigation