Skip to main content
Log in

Microfibrillated cellulose and new nanocomposite materials: a review

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Due to their abundance, high strength and stiffness, low weight and biodegradability, nano-scale cellulose fiber materials (e.g., microfibrillated cellulose and bacterial cellulose) serve as promising candidates for bio-nanocomposite production. Such new high-value materials are the subject of continuing research and are commercially interesting in terms of new products from the pulp and paper industry and the agricultural sector. Cellulose nanofibers can be extracted from various plant sources and, although the mechanical separation of plant fibers into smaller elementary constituents has typically required high energy input, chemical and/or enzymatic fiber pre-treatments have been developed to overcome this problem. A challenge associated with using nanocellulose in composites is the lack of compatibility with hydrophobic polymers and various chemical modification methods have been explored in order to address this hurdle. This review summarizes progress in nanocellulose preparation with a particular focus on microfibrillated cellulose and also discusses recent developments in bio-nanocomposite fabrication based on nanocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  Google Scholar 

  • Ahola S, Österberg M, Laine J (2008a) Cellulose nanofibrils-adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15:303–314

    Article  CAS  Google Scholar 

  • Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008b) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282

    Article  CAS  Google Scholar 

  • Akbari Z, Ghomashchi T, Moghadam S (2007) Improvement in food packaging industry with biobased nanocomposites. Int J Food Eng 3:1–24

    Google Scholar 

  • Aksoy EA, Akata B, Bac N, Hasirci N (2007) Preparation and characterization of zeolite beta-polyurethane composite membranes. J Appl Polym Sci 104:3378–3387

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008a) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008b) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565

    Article  CAS  Google Scholar 

  • Alvarez VA, Terenzi A, Kenny JM, Vázquez A (2004) Melt rheological behavior of starch-based matrix composites reinforced with short sisal fibers. Polym Eng Sci 44:1907–1914

    Article  CAS  Google Scholar 

  • Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispers Sci Technol 28:837–844

    Article  CAS  Google Scholar 

  • Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677

    Article  CAS  Google Scholar 

  • Andresen M, Stenstad P, Moretro T, Langsrud S, Syverud K, Johansson LS, Stenius P (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8:2149–2155

    Article  CAS  Google Scholar 

  • Ankerfors M, Lindström T (2007) On the manufacture and uses of nanocellulose. In the 9th International Conference on Wood & Biofiber Plastic Composites May 21–23, 2007, Madison

  • Anonymous (1983a) Strengthening of paper. Jpn Kokai Tokkyo Koho 82-79609:4

  • Anonymous (1983b) Coating compositions for paper. Jpn Kokai Tokkyo Koho 82-75004:3

  • Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE (2008) Characterization of nanocellulose-reinforced shape memory polyurethanes. Polym Int 57:651–659

    Article  CAS  Google Scholar 

  • Aulin C, Varga I, Claesson PM, Wågberg L, Lindström T (2008) Buildup of polyelectrolyte multilayers of polyethyleneimine and microfibrillated cellulose studied by in situ dual-polarization interferometry and quartz crystal microbalance with dissipation. Langmuir 24:2509–2518

    Article  CAS  Google Scholar 

  • Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures–Their surface properties and interaction with water. Langmuir 25:7675–7685

    Article  CAS  Google Scholar 

  • Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci-Polym Rev C44:231–274

    CAS  Google Scholar 

  • Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E (2003) Thermal and mechanical properties of plasticized poly(L-lactic acid). J Appl Polym Sci 90:1731–1738

    Article  CAS  Google Scholar 

  • Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2008) Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C-Biomim Supramol Syst 28:515–518

    CAS  Google Scholar 

  • Bataille P, Ricard L, Sapieha S (1989) Effects of cellulose fibers in polypropylene composites. Polym Compos 10:103–108

    Article  CAS  Google Scholar 

  • Berghem ER, Pettersson LG (1973) Mechanism of enzymatic cellulose degradation—purification of a cellulolytic enzyme from trichoderma-viride active on highly ordered cellulose. Eur J Biochem 37:21–30

    Article  CAS  Google Scholar 

  • Berglund L (2006) New concepts in natural fiber composites. Proceedings of the 27th Ris¢ International Symposium on Materials Science: Polymer Composite Materials for Wind Power Turbines :1-9

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268

    Article  CAS  Google Scholar 

  • Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377

    Article  CAS  Google Scholar 

  • Bigg DM (2005) Polylactide copolymers: effect of copolymer ratio and end capping on their properties. Adv Polym Technol 24:69–82

    Article  CAS  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Bonini C, Heux L, Cavaille JY, Lindner P, Dewhurst C, Terech P (2002) Rodlike cellulose whiskers coated with surfactant: a small-angle neutron scattering characterization. Langmuir 18:3311–3314

    Article  CAS  Google Scholar 

  • Brown RM (2004) Bacterial cellulose: its potential for new products of commerce. Abstr Pap Am Chem Soc 227:U303–U303

    Google Scholar 

  • Brown EE, Laborie MPG (2007) Bloengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromolecules 8:3074–3081

    Article  CAS  Google Scholar 

  • Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Compos Part A-Appl Sci Manufact 36:1486–1493

    Article  CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2:502–510

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M, Cutler S (2007) Dispersion of wood microfibers in a matrix of thermoplastic starch and starch-polylactic acid blend. J Biobased Mater Bioenergy 1:71–77

    Google Scholar 

  • Chen RH, Lin WC, Lin JH (1994) Effects of pH, ionic-strength, and type of anion on the rheological properties of chitosan solutions. Acta Polymerica 45:41–46

    Article  CAS  Google Scholar 

  • Cheng Q, Wang SQ, Rials TG, Lee SH (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14:593–602

    Article  CAS  Google Scholar 

  • Chenite A, Buschmann M, Wang D, Chaput C, Kandani N (2001) Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym 46:39–47

    Article  CAS  Google Scholar 

  • Ciechanska D (2004) Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres and Text in East Eur 12:69–72

    CAS  Google Scholar 

  • Clowes FAL, Juniper BE et al (eds) (1968) Plant cells. Blackwell Scientific Publications, Oxford, UK

    Google Scholar 

  • Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447

    Article  CAS  Google Scholar 

  • Cyras VP, Manfredi LB, Ton-That MT, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 73:55–63

    Article  CAS  Google Scholar 

  • Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411

    Article  CAS  Google Scholar 

  • Dalmas F, Cavaillé JY, Gauthier C, Chazeau L, Dendievel R (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 67:829–839

    Article  CAS  Google Scholar 

  • de Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270

    Article  CAS  Google Scholar 

  • Decher G, Schlenoff JB (2003) Multilayer thin films: sequential assembly of nanocomposite materials. Wiley WCH, Weiheim

    Google Scholar 

  • Dinand E, Chanzy H, Vignon MR (1996a) Parenchymal cell cellulose from sugar beet pulp. Cellulose 3:183–188

    Article  CAS  Google Scholar 

  • Dinand E, Alalin M, Chanzy H, Vincent I, Vignon MR (1996b) Microfibrillated cellulose and process for making the same from vegetable pulps having primary walls, especially from sugar beet pulp. Eur. Pat. Appl. 96–400261;95–1460

  • Dinand E, Chanzy H, Vignon MR (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocoll 13:275–283

    Article  CAS  Google Scholar 

  • Ding B, Kimura E, Sato T, Fujita S, Shiratori S (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45:1895–1902

    Article  CAS  Google Scholar 

  • Duanmu J, Gamstedt EK, Rosling A (2007) Hygromechanical properties of composites of crosslinked allylglycidyl-ether modified starch reinforced by wood fibres. Compos Sci Technol 67:3090–3097

    Article  CAS  Google Scholar 

  • Duda A, Penczek S (2003) Polylactide [poly(lactic acid)]: synthesis, properties and applications. Polimery 48:16–27

    CAS  Google Scholar 

  • Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696

    Article  CAS  Google Scholar 

  • Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    Article  CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    Article  CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Paillet M (2003) Lignocellulosic flour-reinforced poly(hydroxybutyrate-co-valerate) composites. J Appl Polym Sci 87:1302–1315

    Article  CAS  Google Scholar 

  • Dujardin E, Blaseby M, Mann S (2003) Synthesis of mesoporous silica by sol-gel mineralisation of cellulose nanorod nematic suspensions. J Mater Chem 13:696–699

    Article  CAS  Google Scholar 

  • Durango AM, Soares NFF, Benevides S, Teixeira J, Carvalho M, Wobeto C, Andrade NJ (2006) Development and evaluation of an edible antimicrobial film based on yam starch and chitosan. Packag Technol Sci 19:55–59

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131

    Article  CAS  Google Scholar 

  • El-Saied H, Basta AH, Gobran RH (2004) Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polym Plast Technol Eng 43:797–820

    Article  CAS  Google Scholar 

  • Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nordic Pulp Pap Res J 23(3):299–304

    Article  CAS  Google Scholar 

  • Fernández A, Sánchez MD, Ankerfors M, Lagaron JM (2008) Effects of ionizing radiation in ethylene-vinyl alcohol copolymers and in composites containing microfibrillated cellulose. J Appl Polym Sci 109:126–134

    Article  CAS  Google Scholar 

  • Forssell P, Lahtinen R, Lahelin M, Myllarinen P (2002) Oxygen permeability of amylose and amylopectin films. Carbohydr Polym 47:125–129

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Gällstedt M, Hedenqvist MS (2006) Packaging-related mechanical and barrier properties of pulp-fiber-chitosan sheets. Carbohydr Polym 63:46–53

    Article  CAS  Google Scholar 

  • Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575

    Article  CAS  Google Scholar 

  • Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martinez-Pastor J (2008) Morphological characterisation of bacterial cellulose-starch nanocomposites. Polym Polym Compos 16:181–185

    CAS  Google Scholar 

  • Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807

    Article  CAS  Google Scholar 

  • Gruber E, Granzow C (1996) Preparing cationic pulp by graft copolymerisation.1. Synthesis and characterization. Papier 50:293

    CAS  Google Scholar 

  • Guhados G, Wan WK, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646

    Article  CAS  Google Scholar 

  • Gunatillake P, Mayadunne R, Adhikari R (2008) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12:301–347

    Article  CAS  Google Scholar 

  • Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers—Polylactide: a critique. Eur Polym J 43:4053–4074

    Article  CAS  Google Scholar 

  • Habibi Y, Vignon MR (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185

    Article  CAS  Google Scholar 

  • Habibi Y, Mahrouz M, Vignon MR (2009) Microfibrillated cellulose from the peel of prickly pear fruits. Food Chem 115:423–429

    Article  CAS  Google Scholar 

  • Hafren J, Zou WB, Cordova A (2006) Heterogeneous ‘organoclick’ derivatization of polysaccharides. Macromol Rapid Commun 27:1362–1366

    Article  CAS  Google Scholar 

  • Hao AY, Geng YY, Xu Q, Lu ZY, Yu L (2008) Study of different effects on foaming process of biodegradable PLA/starch composites in supercritical/compressed carbon dioxide. J Appl Polym Sci 109:2679–2686

    Article  CAS  Google Scholar 

  • Harada M, Ohya T, Iida K, Hayashi H, Hirano K, Fukuda H (2007) Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J Appl Polym Sci 106:1813–1820

    Article  CAS  Google Scholar 

  • Hashiba M (2009) Thermoplastic resin compositions containing cellulose nanofibers with good bending properties. PCT Int Appl. 2008-JP58502; 2007–195163:24

  • Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolym/PVA Hydrogels/Anionic Polym Nanocomposites 153:37–65

    Article  CAS  Google Scholar 

  • Hayashi H, Shimo T (2006) Automobile outside plates with good surface smoothness from cellulose fiber prepregs. Jpn. Kokai Tokkyo Koho 2005–136053:9

    Google Scholar 

  • Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824

    Article  CAS  Google Scholar 

  • Henriksson G, Nutt A, Henriksson H, Pettersson B, Stahlberg J, Johansson G, Pettersson G (1999) Endoglucanase 28 (cel12A), a new Phanerochaete chrysosporium cellulase. Eur J Biochem 259:88–95

    Article  CAS  Google Scholar 

  • Henriksson G, Christiernin M, Agnemo R (2005) Monocomponent endoglucanase treatment increases the reactivity of softwood sulfite dissolving pulp. J Ind Microbiol Biotechnol 32:211–214

    Article  CAS  Google Scholar 

  • Henriksson G, Henriksson M (2004) Biofibre Materials Centre (BiMaC) Newsletter No 5/04. http://www.bimac.kth.se/News/Nyhetsbrev_5-04.pdf

  • Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Article  CAS  Google Scholar 

  • Herrick FW (1984) Microfibrillated cellulose. U.S. Patent 83-479556:4

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212

    Article  CAS  Google Scholar 

  • Horiuchi T, Fukuda A, Yano H (2008) Manufacturing method of phenolic resin compositions containing cellulose nanofibers. Jpn Kokai Tokkyo Koho 2007-91266:10

    Google Scholar 

  • Hosokawa J, Nishiyama M, Yoshihara K, Kubo T (1990) Biodegradable film derived from chitosan and homogenized cellulose. Ind Eng Chem Res 29:800–805

    Article  CAS  Google Scholar 

  • Hosokawa J, Nishiyama M, Yoshihara K, Kubo T, Terabe A (1991) Reaction between chitosan and cellulose on biodegradable composite film formation. Ind Eng Chem Res 30:788–792

    Article  CAS  Google Scholar 

  • Huang MF, Yu JG, Ma XF (2004) Studies on the properties of Montmorillonite-reinforced thermoplastic starch composites. Polymer 45:7017–7023

    Article  CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929

    Google Scholar 

  • Huda MS, Drzal LT, Mohanty AK, Misra M (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66:1813–1824

    Article  CAS  Google Scholar 

  • Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432

    Article  CAS  Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2000) A comparative CP/MAS C-13-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55

    Article  CAS  Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2002) A comparative CP/MAS C-13-NMR study of the supermolecular structure of polysaccharides in sulfite and kraft pulps. Holzforschung 56:179–184

    Article  CAS  Google Scholar 

  • Hult EL, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10:103–110

    Article  CAS  Google Scholar 

  • Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978

    Article  CAS  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  • Imai T, Putaux JL, Sugiyama J (2003) Geometric phase analysis of lattice images from algal cellulose microfibrils. Polymer 44:1871–1879

    Article  CAS  Google Scholar 

  • Ishikawa H, Ide S, Kawamata C (1994) Manufacture of microfibrillated cellulose fibers. Jpn Kokai Tokkyo Koho 92-165820:5

    Google Scholar 

  • Isogai A, Kato Y (1998) Preparation of polyglucuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Okita Y (2008) Manufacture of cellulose nanofibers, cellulose nanofibers manufactured thereby, and aqueous suspensions thereof. Jpn Kokai Tokkyo Koho 2007-160604:12

    Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A-Mater Sci Process 81:1109–1112

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A-Mater Sci Process 89:461–466

    Article  CAS  Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026

    Article  CAS  Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106

    Article  CAS  Google Scholar 

  • Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils—An enzymathic approach. Bioresources 1:176–188

    Google Scholar 

  • Jang WY, Shin BY, Lee TX, Narayan R (2007) Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. J Ind Eng Chem 13:457–464

    CAS  Google Scholar 

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207

    Article  CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    Article  CAS  Google Scholar 

  • John MJ, FranciS B, Varughese KT, Thomas S (2008) Effect of chemical modification on properties of hybrid fiber biocomposites. Compos Part A-Appl Sci Manufact 39:352–363

    Article  CAS  Google Scholar 

  • Juntaro J, Pommet M, Mantalaris A, Shaffer M, Bismarck A (2007) Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Compos Interfaces 14:753–762

    Article  CAS  Google Scholar 

  • Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv Mater 20:3122–3126

    Article  CAS  Google Scholar 

  • Kaczmarek H, Bajer K, Galka P, Kotnowska B (2007) Photodegradation studies of novel biodegradable blends based on poly(ethylene oxide) and pectin. Polym Degrad Stab 92:2058–2069

    Article  CAS  Google Scholar 

  • Kadokawa J, Murakami M, Takegawa A, Kaneko Y (2009) Preparation of cellulose-starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydr Polym 75:180–183

    Article  CAS  Google Scholar 

  • Katsura T (1988) Manufacture of paper containing microparticles with good strength. Jpn Kokai Tokkyo Koho 87-150709:5

    Google Scholar 

  • Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361–367

    Article  CAS  Google Scholar 

  • Kim EG, Kim BS, Kim DS (2007) Physical properties and morphology of polycaprolactone/starch/pine-leaf composites. J Appl Polym Sci 103:928–934

    Article  CAS  Google Scholar 

  • Kitagawa K, Yano H (2008) Microfibrillated cellulose composite resins and their manufacture. Jpn Kokai Tokkyo Koho 2007-142560:18

    Google Scholar 

  • Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides 205:49–96

    Article  CAS  Google Scholar 

  • Koga S (2000) Gas-barrier and moisture-resistant paper laminate. Jpn Kokai Tokkyo Koho 99-110576:7

    Google Scholar 

  • Krässig HA (1993) Cellulose-structure. Accessibility and Reactivity. Gordon and Breach Science Publishers, Yverdon, Switzerland, pp 307–314

    Google Scholar 

  • Kumar AP, Singh RP (2008) Biocomposites of cellulose reinforced starch: improvement of properties by photo-induced crosslinking. Bioresour Technol 99:8803–8809

    Article  CAS  Google Scholar 

  • Lai SM, Don TM, Huang YC (2006) Preparation and properties of biodegradable thermoplastic starch/poly(hydroxy butyrate) blends. J Appl Polym Sci 100:2371–2379

    Article  CAS  Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433

    Article  CAS  Google Scholar 

  • Lee SH, Kim DJ, Kim JH, Lee DH, Sim SJ, Nam JD, Kye HS, Lee YK (2004) Compatibilization and properties of modified starch-poly(lactic acid) blend. Polymer-Korea 28:519–523

    CAS  Google Scholar 

  • Lee JM, Heitmann JA, Pawlak JJ (2007a) Local morphological and dimensional changes of enzyme-degraded cellulose materials measured by atomic force microscopy. Cellulose 14:643–653

    Article  CAS  Google Scholar 

  • Lee SY, Xu YX, Hanna MA (2007b) Tapioca starch-poly (lactic acid)-based nanocomposite foams as affected by type of nanoclay. Int Polym Process 22:429–435

    CAS  Google Scholar 

  • Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425

    Article  CAS  Google Scholar 

  • Levis SR, Deasy PB (2001) Production and evaluation of size reduced grades of microcrystalline cellulose. Int J Pharm 213:13–24

    Article  CAS  Google Scholar 

  • Liao HT, Wu CS (2008) New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch. J Appl Polym Sci 108:2280–2289

    Article  CAS  Google Scholar 

  • Lindström T (2007) Towards new perspectives in paper chemistry. Das Papier IPW 10:32–36

    Google Scholar 

  • Lindström T, Ankerfors M, Henriksson G (2007) Method for treating chemical pulp for manufacturing microfibrillated cellulose. PCT Int Appl. 2007-SE82; 2006-272:14

  • Ljungberg N, Wesslen B (2002) The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Appl Polym Sci 86:1227–1234

    Article  CAS  Google Scholar 

  • Lönnberg H, Fogelström L, Malström E, Zhou Q, Berglund L, Hult A (2008) Microfibrillated cellulose films grafted with poly(ε-caprolactone)—for biocomposite applications. Nordic Polymer Days, 11–13 June, Stockholm

  • López-Rubio A, Lagaron JM, Ankerfors M, Lindström T, Nordqvist D, Mattozzi A, Hedenqvist MS (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68:718–727

    Article  CAS  Google Scholar 

  • Lu J, Askeland P, Drzal LT (2008a) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296

    Article  CAS  Google Scholar 

  • Lu J, Wang T, Drzal LT (2008b) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A-Appl Sci Manufact 39:738–746

    Article  CAS  Google Scholar 

  • Ma XF, Yu JG (2004a) Formamide as the plasticizer for thermoplastic starch. J Appl Polym Sci 93:1769–1773

    Article  CAS  Google Scholar 

  • Ma XF, Yu JG (2004b) Studies on the properties of formamide plasticized-thermoplastic starch. Acta Polymerica Sinica 35(2):240–245

    Google Scholar 

  • Ma XF, Yu JG, Kennedy JF (2005) Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydr Polym 62:19–24

    Article  CAS  Google Scholar 

  • Ma XF, Chang PR, Yu JG (2008a) Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydr Polym 72:369–375

    Article  CAS  Google Scholar 

  • Ma XF, Chang PR, Yu JG, Wang N (2008b) Preparation and properties of biodegradable poly(propylene carbonate)/thermoplastic dried starch composites. Carbohydr Polym 71:229–234

    Article  CAS  Google Scholar 

  • Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S (2006) Bacterial cellulose/silica hybrid fabricated by mimicking biocomposites. J Mater Sci 41:5646–5656

    Article  CAS  Google Scholar 

  • Malainine ME, Mahrouz M, Dufresne A (2005) Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Compos Sci Technol 65:1520–1526

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025

    Article  CAS  Google Scholar 

  • Mathew AP, Chakraborty A, Oksman K, Sain M (2006) The structure and mechanical properties of cellulose nanocomposites prepared by twin screw extrusion. In: Oksman K, Sain M (eds) Cellulose nanocomposites: processing, characterization, and properties. American Chemical Society, Washington DC 938:114–131

  • Mathew V, Nair CKNU, Sivasankaran P (2007) Polymeric material of cellulose nanofiber prepared from wastes of plantain and banana plants. Indian Pat Appl. 2006-CH2005:13

  • Mathew AP, Thielemans W, Dufresne A (2008) Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 109:4065–4074

    Article  CAS  Google Scholar 

  • Mathew V, Nair CKNU, Sivasankaran P (2009) Cellulose nanofiber produced from water hyacinth. Indian Pat Appl. 2007-CH2506:14

  • Matsuda Y, Hirose M, Ueno K (2001) Microfibrillated ultrafine celluloses for coated and tinted papers and their microfibrillating and papermaking processes. U.S. Patent 97-886262:10

  • Mehta R, Kumar V, Bhunia H, Upadhyay SN (2005) Synthesis of poly(lactic acid): a review. J Macromol Sci-Polym Rev C45:325–349

    Article  CAS  Google Scholar 

  • Millon LE, Wan WK (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res Part B-Appl Biomater 79B:245–253

    Article  CAS  Google Scholar 

  • Miyazaki Y, Shimazaki Y, Takesawa Y (2008) Fiber-reinforced composite resin compositions with good even thermal conductivity. Jpn Kokai Tokkyo Koho 2007-89672:12

    Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276:1–24

    Article  Google Scholar 

  • Mondragón M, Arroyo K, Romero-García J (2008) Biocomposites of thermoplastic starch with surfactant. Carbohydr Polym 74:201–208

    Article  CAS  Google Scholar 

  • Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  CAS  Google Scholar 

  • Myllarinen P, Buleon A, Lahtinen R, Forssell P (2002a) The crystallinity of amylose and amylopectin films. Carbohydr Polym 48:41–48

    Article  CAS  Google Scholar 

  • Myllarinen P, Partanen R, Seppala J, Forssell P (2002b) Effect of glycerol on behaviour of amylose and amylopectin films. Carbohydr Polym 50:355–361

    Article  CAS  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A-Mater Sci Process 78:547–552

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A-Mater Sci Process 80:155–159

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2008a) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2008b) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559

    Article  CAS  Google Scholar 

  • Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A-Mater Sci Process 80:93–97

    Article  CAS  Google Scholar 

  • Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from steets obtained by a papermaking-like process. Comp Sci Techn 69:1293–1297

    Article  CAS  Google Scholar 

  • Nakahara S (2008) Resin composite materials containing surface-treated microfibrillated cellulose (MFC) reinforcement, their manufacture, and their articles. Jpn Kokai Tokkyo Koho 2007-17153:10

    Google Scholar 

  • Nakahara S, Saito E, Asada T (2008) Manufacture of microfibrillated cellulose-polymer composites with high mechanical strength, aqueous dispersions therefore, and manufacture of moldings comprising them. Jpn Kokai Tokkyo Koho 2007-82938:10

    Google Scholar 

  • Nakamatsu J, Torres FG, Troncoso OP, Yuan ML, Boccaccini AR (2006) Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds. Biomacromolecules 7:3345–3355

    Article  CAS  Google Scholar 

  • Ning W, Jiugao Y, Xiaofei M (2008) Preparation and characterization of compatible thermoplastic dry starch/poly(lactic acid). Polym Compos 29:551–559

    Article  CAS  Google Scholar 

  • Nishama M, Hosokawa J, Yoshihara K, Kubo T, Maruyama K, Kaneoka K, Ueda A, Tateishi K, Kondo K (1993) Cellulose-containing biodegradable films and sheets with good flexibility and their manufacture. Jpn Kokai Tokkyo Koho 91-339964:4

    Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687

    Article  CAS  Google Scholar 

  • Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852

    Article  CAS  Google Scholar 

  • Nogi M, Yano H (2009) Optically transparent nanofiber sheets by deposition of transparent materials: a concept for roll-to-roll processing. Appl Phys Lett 94(23):1–3

    Article  CAS  Google Scholar 

  • Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87(24):1–3

    Article  CAS  Google Scholar 

  • Nogi M, Abe K, Handa K, Nakatsubo F, Ifuku S, Yano H (2006a) Property enhancement of optically transparent bionanofiber composites by acetylation. Appl Phys Lett 89(23):1–3

    Article  CAS  Google Scholar 

  • Nogi M, Ifuku S, Abe K, Handa K, Nakagaito AN, Yano H (2006b) Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett 88(13):1–3

    Article  CAS  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  • Nordqvist D, Idermark J, Hedenqvist MS (2007) Enhancement of the wet properties of transparent chitosan-acetic-acid-salt films using microfibrillated cellulose. Biomacromolecules 8:2398–2403

    Article  CAS  Google Scholar 

  • Ohad I, Mejzler D (1965) On ultrastructure of cellulose microfibrils. J Pol Sci Part-A-Gen-Pap 3:399–406

    Article  CAS  Google Scholar 

  • Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784

    Article  CAS  Google Scholar 

  • Okubo K, Fujii T, Yamashita N (2005) Improvement of interfacial adhesion in bamboo polymer composite enhanced with micro-fibrillated cellulose. JSME Int J Series A-Solid Mech Mater Eng 48:199–204

    Google Scholar 

  • Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A-Appl Sci Manufact 40:469–475

    Article  CAS  Google Scholar 

  • Omura M, Tsukegi T, Shirai Y, Nishida H, Endo T (2006) Thermal degradation behavior of poly(lactic acid) in a blend with polyethylene. Ind Eng Chem Res 45:2949–2953

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  CAS  Google Scholar 

  • Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499

    Article  CAS  Google Scholar 

  • Page DH, Abbot J (1983) Changes in cellulose structure during pulping. Paperi Ja Puu-Pap Timber 65:797

    Google Scholar 

  • Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5:497–526

    Article  CAS  Google Scholar 

  • Paradossi G, Cavalieri F, Chiessi E (2003) Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci-Mater Med 14:687–691

    Article  CAS  Google Scholar 

  • Park JW, Im SS (2003) Miscibility and morphology in blends of poly(L-lactic acid) and poly(vinyl acetate-co-vinyl alcohol). Polymer 44:4341–4354

    Article  CAS  Google Scholar 

  • Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187–2196

    Article  CAS  Google Scholar 

  • Petersson L, Oksman K, Mathew AP (2006) Using maleic anhydride grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/layered-silicate nanocomposites. J Appl Polym Sci 102:1852–1862

    Article  CAS  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544

    Article  CAS  Google Scholar 

  • Plackett D, Andersen TL, Pedersen WB, Nielsen L (2003) Biodegradable composites based on L-polylactide and jute fibres. Compos Sci Technol 63:1287–1296

    Article  CAS  Google Scholar 

  • Plackett DV, Holm VK, Johansen P, Ndoni S, Nielsen PV, Sipilainen-Malm T, Södergård A, Verstichel S (2006) Characterization of L-polylactide and L-polylactide-polycaprolactone co-polymer films for use in cheese-packaging applications. Packag Technol Sci 19:1–24

    Article  CAS  Google Scholar 

  • Ranby BG (1952) The cellulose micelles. Tappi 35:53–58

    CAS  Google Scholar 

  • Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23:22–27

    Article  CAS  Google Scholar 

  • Ren J, Liu Z, Ren T (2007) Mechanical and thermal properties of poly(lactic acid)/starch/montmorillonite biodegradable blends. Polym Polym Compos 15:633–638

    CAS  Google Scholar 

  • Rhim JW (2007) Potential use of biopolymer-based nanocomposite films in food packaging applications. Food Sci Biotechnol 16:691–709

    CAS  Google Scholar 

  • Rhim JW, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47:411–433

    Article  CAS  Google Scholar 

  • Romhany G, Karger-Kocsis J, Czigany T (2003) Tensile fracture and failure behavior of thermoplastic starch with unidirectional and cross-ply flax fiber reinforcements. Macromol Mater Eng 288:699–707

    Article  CAS  Google Scholar 

  • Rosa DD, Volponi JE, Guedes CDF (2006) Biodegradation and the dynamic mechanical properties of starch gelatinization in poly(epsilon-caprolactone)/corn starch blends. J Appl Polym Sci 102:825–832

    Article  CAS  Google Scholar 

  • Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18:351–363

    Article  CAS  Google Scholar 

  • Sain MM, Bhatnagar A (2008) Manufacturing process of cellulose nanofibers from renewable feed stocks. U.S Pat Appl Publ 2004-936236; 2003-512912:19

  • Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohydr Polym 61:183–190

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf A-Physicochem Eng Asp 289:219–225

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2007) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res 46:773–780

    Article  CAS  Google Scholar 

  • Saito T, Yanagisawa M, Isogai A (2005) TEMPO-mediated oxidation of native cellulose: SEC-MALLS analysis of water-soluble and -insoluble fractions in the oxidized products. Cellulose 12:305–315

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996

    Article  CAS  Google Scholar 

  • Salmi J, Nypelö T, Österberg M, Laine J (2009) Layer structures formed by silica nanoparticles and cellulose nanofibrils with cationic polyacrylamide (C-PAM) on cellulose surface and their influence on interactions. Bioresources 4:602–625

    CAS  Google Scholar 

  • Samir MASA, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R, Banaprasert T, Pavasant P, Phisalaphong M (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 22:1194–1199

    Article  CAS  Google Scholar 

  • Sánchez-García MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71:235–244

    Article  CAS  Google Scholar 

  • Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49:599–609

    Article  CAS  Google Scholar 

  • Seydibeyoglu MO, Oksman K (2008) Novel nanocomposites based on polyurethane and microfibrillated cellulose. Compos Sci Technol 68:908–914

    Article  CAS  Google Scholar 

  • Shibuya H, Hayashi T (2008) Manufacture of cellulose nanofibers by enzymatic treatment and cellulose nanofibers manufactured thereby. Jpn Kokai Tokkyo Koho 2006-337350:13

    Google Scholar 

  • Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8

    Article  CAS  Google Scholar 

  • Singh S, Ray SS (2007) Polylactide based nanostructured biomaterials and their applications. J Nanosci Nanotechnol 7:2596–2615

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2008) Characterization of microfibrillated cellulose (MFC) films made of different types of raw material. Nordic Polymer Days, 11-13 June, Stockholm, Sweden

  • Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    Article  CAS  Google Scholar 

  • Sreekala MS, Goda K, Devi PV (2008) Sorption characteristics of water, oil and diesel in cellulose nanofiber reinforced corn starch resin/ramie fabric composites. Compos Interfaces 15:281–299

    Article  CAS  Google Scholar 

  • Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    Article  CAS  Google Scholar 

  • Sumi H, Uchimura H, Kobayashi Y (2009) Resin composites containing surface-modified cellulose fibers and showing high mechanical strength and transparency, and their manufacture. Jpn Kokai Tokkyo Koho 2007-234422:18

    Google Scholar 

  • Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192

    Article  CAS  Google Scholar 

  • Suzuki M, Hattori Y (2004) Method and apparatus for producing microfibrillated cellulose. PCT Int.Appl. 2003-JP8974; 2002-209548:51

  • Svagan AJ, Samir MASA, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563

    Article  CAS  Google Scholar 

  • Svagan AJ, Samir MASA, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater 20:1263–1269

    Article  CAS  Google Scholar 

  • Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  CAS  Google Scholar 

  • Tahiri C, Vignon MR (2000) TEMPO-oxidation of cellulose: synthesis and characterisation of polyglucuronans. Cellulose 7:177–188

    Article  CAS  Google Scholar 

  • Takagi H, Asano A (2008) Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites. Compos Part A-Appl Sci Manufact 39:685–689

    Article  CAS  Google Scholar 

  • Takami T (1999) Manufacture of microfibrillated cellulose. Jpn Kokai Tokkyo Koho 97-274326:10

    Google Scholar 

  • Tamura N, Ban K, Takahashi S, Kasemura T, Obuchi S (2006) Application of poly(acetic acid)-based graft copolymer as a compatibilizer for poly(L-lactic acid)/poly(butylenesuccinate) blend system. J Adhes 82:355–373

    Article  CAS  Google Scholar 

  • Tanem BS, Kvien I, van Helvoort ATJ, Oksman K (2006) Morphology of cellulose and its nanocomposites. In: Oksman K, Sain M (eds) Cellulose Nanocomposites: Processing, Characterization, and Properties, American Chemical Society, Washington DC, 938:48-62

  • Taniguchi T (2003) Nanofibrils from natural organic fibers as industrial materials. Jpn Kokai Tokkyo Koho 2001-353840:4

    Google Scholar 

  • Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294

    Article  CAS  Google Scholar 

  • Thire RMSM, Ribeiro TAA, Andrade CT (2006) Effect of starch addition on compression-molded poly(3-hydroxybutyrate)/starch blends. J Appl Polym Sci 100:4338–4347

    Article  CAS  Google Scholar 

  • Thomas H, Heine E, Wollseifen R, Cimpeanu C, Möller M (2005) Nanofibers from natural and inorganic polymers via electrospinning. Int Nonwovens J 14:18

    Google Scholar 

  • Tobushi H, Hara H, Yamada E, Hayashi S (1996a) Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. Smart Mater Struct 5:483–491

    Article  CAS  Google Scholar 

  • Tobushi H, Hayashi S, Ikai A, Hara H (1996b) Thermomechanical properties of shape memory polymers of polyurethane series and their applications. J de Phys IV 6:377–384

    CAS  Google Scholar 

  • Tserki V, Matzinos P, Zafeiropoulos NE, Panayiotou C (2006) Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. J Appl Polym Sci 100:4703–4710

    Article  CAS  Google Scholar 

  • Tsuji H, Fukui I (2003) Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44:2891–2896

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) J Appl Polym Sci: Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1985) Microfibrillated cellulose. Patentschrift (Switz.) 81-3923:10

  • Utsel S, Malström E, Carlmark A, Wågberg L (2008) Interactive nano fibrils. Nordic Polymer Days, 11–13 June, Stockholm, Sweden

  • Virtanen T, Maunu SL, Tamminen T, Hortfing B, Liitia T (2008) Changes in fiber ultrastructure during various kraft pulping conditions evaluated by C-13 CPMAS NMR spectroscopy. Carbohydr Polym 73:156–163

    CAS  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnas K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  CAS  Google Scholar 

  • Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264

    Article  CAS  Google Scholar 

  • Wan WK, Hutter JL, Millon LE, Guhados G (2006) Bacterial cellulose and its nanocomposites for biomedical applications. In: Oksman K, Sain M (eds) Cellulose nanocomposites. Processing Characterization, and Properties. American Chemical Society, Washington DC

    Google Scholar 

  • Wang B, Sain M (2007a) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56:538–546

    Article  CAS  Google Scholar 

  • Wang B, Sain M (2007b) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527

    Article  CAS  Google Scholar 

  • Wang B, Sain M (2007c) The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. Bioresources 2:371–388

    CAS  Google Scholar 

  • Wang YM, Rodriguez-Perez MA, Reis RL, Mano JF (2005) Thermal and thermomechanical behaviour of polycaprolactone and starch/polycaprolactone blends for biomedical applications. Macromol Mater Eng 290:792–801

    Article  CAS  Google Scholar 

  • Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103

    Article  CAS  Google Scholar 

  • Wang N, Yu JG, Chang PR, Ma XF (2008) Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends. Carbohydr Polym 71:109–118

    Article  CAS  Google Scholar 

  • Werner O, Persson L, Nolte M, Fery A, Wågberg L (2008) Patterning of surfaces with nanosized cellulosic fibrils using microcontact printing and a lift-off technique. Soft Matter 4:1158–1160

    Article  CAS  Google Scholar 

  • Wu CS, Liao HT (2005) A new biodegradable blends prepared from polylactide and hyaluronic acid. Polymer 46:10017–10026

    Article  CAS  Google Scholar 

  • Xu YX, Kim KM, Hanna MA, Nag D (2005) Chitosan-starch composite film: preparation and characterization. Ind Crop Prod 21:185–192

    Article  CAS  Google Scholar 

  • Yano H, Ifuku S (2008) Surface-modified microfibrillated celluloses, their manufacture, and their polymer composites with high mechanical strength. Jpn Kokai Tokkyo Koho 2008-82027; 2007-78924:18

    Google Scholar 

  • Yano H, Nakagaito AN (2008) Microfibrillated cellulose having cellulose type-II crystalline structure, and molded article containing the microfibrillated cellulose. PCT Int.Appl. 2007-JP64005; 2006-197513:22

  • Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153

    Google Scholar 

  • Yano H, Seki N, Ishida T (2008) Manufacture of nanofibers and nanofibers manufactured thereby. Jpn Kokai Tokkyo Koho 2007-2229:17

    Google Scholar 

  • Yoon SY, Deng YL (2006) Clay-starch composites and their application in papermaking. J Appl Polym Sci 100:1032–1038

    Article  CAS  Google Scholar 

  • Zhang HR, Tong MW (2007) Influence of hemicelluloses on the structure and properties of lyocell fibers. Polym Eng Sci 47:702–706

    Article  CAS  Google Scholar 

  • Zhang HR, Zhang HH, Tong MW, Shao HL, Hu XC (2008) Comparison of the structures and properties of lyocell fibers from high hemicellulose pulp and high alpha-cellulose pulp. J Appl Polym Sci 107:636–641

    Article  CAS  Google Scholar 

  • Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Article  CAS  Google Scholar 

  • Zimmermann T, Poehler E, Geiger T (2005a) Cellulose fibrils for polymer reinforcement. Abstr Pap Am Chem Soc 229:U313–U313

    Google Scholar 

  • Zimmermann T, Pohler E, Schwaller P (2005b) Mechanical and morphological properties of cellulose fibril reinforced nanocomposites. Adv Eng Mater 7:1156–1161

    Article  CAS  Google Scholar 

  • Zuluaga R, Putaux JL, Restrepo A, Mondragón I, Ganan P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to express their gratitude for the assistance of Vimal Katiyar (Risø-DTU) with TEM imaging, as illustrated in Fig. 3. Funding provided by the Danish Research Council for Technology and Production Sciences to support the research of István Siró is hereby gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Siró.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siró, I., Plackett, D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17, 459–494 (2010). https://doi.org/10.1007/s10570-010-9405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9405-y

Keywords

Navigation