Skip to main content
Log in

Incorporation of carboxyl groups into xylan for improved absorbency

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The objective of this research was to investigate green, renewable reaction systems for xylan that introduce crosslinking and carbonyl group for improved performance in water absorption applications. Xylan was modified separately with three different reaction agents, citric acid, succinic anhydride and sodium monochloracetate (SMCA). The xylan was reacted with citric acid in the presence or absence of sodium hypophosphite (SHP) as a catalyst, both in a solution form and in a semi-dry form in an oven. Acid–base titrations, FTIR, TGA, and DSC were used to confirm the composition of the reactant products. Reacted xylan had significantly increased carboxyl content, degree of esterification and degree of substitution with citric acid, succinic anhydride, and sodium monochloracetate. Effective reaction conditions were determined for high yield products. For the xylan reacted with citric acid, the catalyst (SHP) and the use of a semi-dry reaction condition increased the yield significantly. Succinic anhydride and SMCA had high yields. The reaction trends observed were consistent with similar results for starch. Increases in water absorption, saline solution absorption, and decreases in water contact angle for the xylan citrate relative to the xylan indicate that high carboxyl content materials can be generated with xylan and that the resulting materials have enhanced water affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Demitri C, Sole RD, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110:2453–2460

    Article  CAS  Google Scholar 

  • Ebringerova A, Hromadkova Z (1999) Xylans of industrial and biomedical importance. J Biotechnol Genet Eng Rev 16:325–346

    CAS  Google Scholar 

  • Gabrielii I, Gatenholm P (1998) Preparation and properties of hydrogels based on hemicellulose. J Appl Polym Sci 69:1661–1667

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T, Heinze U, Schwikal K (2004) Starch derivatives of high degree of functionalization 9: carboxymethyl starches. Cellulose 11:239–245

    Article  CAS  Google Scholar 

  • Hettrich K, Fischer S, Schro N, Engelhardt J, Drechsler U, Loth F (2006) Derivatization and characterization of xylan from oat spelts. Macromol Symp 232:37–48

    Article  CAS  Google Scholar 

  • Koshijima T, Timell TE, Zinbo M (1965) The number-average molecular weight of native hardwood xylan. J Polym Sci Part C 11:265–279

    Google Scholar 

  • Lindblad SM, Albertsson AC, Ranucci E, Laus M, Giani E (2005) Biodegradable polymer from renewable sources: rheological characterization of hemicellulose-based hydrogels. Biomacromolecules 6:684–690

    Article  CAS  Google Scholar 

  • Liu X, Yu L, Liu H, Chen L, Li J (2008) In situ thermal decomposition of starch with constant moisture in a sealed system. J Polym Degrad and Stab 93:260–262

    Article  CAS  Google Scholar 

  • Ma X, Chang RP, Yu J, Stumborg M (2009) Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydr Polym 75:1–8

    Article  CAS  Google Scholar 

  • Natanya MLH, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9:1493–1505

    Article  Google Scholar 

  • Prade RA (1995) Xylanases: from biology to biotechnology. J Biotechnol Genet Eng Rev 13:101–131

    Google Scholar 

  • Pushpamalar V, Langford JS, Ahmad M, Lim YY (2004) Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydr Polym 57:261–267

    Article  Google Scholar 

  • Ren JL, Peng F, Sun RC, Liu CF, Cao ZN, Luo W, Tang JN (2008a) Synthesis of cationic hemicellulosic derivatives with a low degree of substitution in dimethyl sulfoxide media. J Appl Polym Sci 109:2711–2717

    Article  CAS  Google Scholar 

  • Ren JL, Peng F, Sun RC (2008b) Preparation of hemicelluloses derivatives with bifunctional groups in different media. J Agric Food Chem 56:11209–11216

    Article  CAS  Google Scholar 

  • Rozie H, Somers W, Bonte A, Rombouts FM, Visser J (1992) Crosslinked xylan as an affinity adsorbant for endo-xylanases. Carbohydr Polym 17:19–28

    Article  Google Scholar 

  • Salam A, Pawlak JJ, Venditti RA, El-tahlawy K (2010) Synthesis and characterization of starch citrate-chitosan foam with superior water and saline absorbance properties. Biomacromolecules 11:1453–1459

    Article  CAS  Google Scholar 

  • Salam A, Venditti RA, Pawlak JJ, El-tahlawy K (2011) Crosslinked hemicellulose citrate–chitosan aerogel foams. Carbohydr Polym 84:1221–1229

    Article  CAS  Google Scholar 

  • Shah BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  Google Scholar 

  • Shi R, Zhang Z, Liu Q, Yanming Han Y, Zhang L, Dafu Chen D, Tian W (2007) Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydr Polym 69:748–755

    Article  CAS  Google Scholar 

  • Kiyose A, Shimamoto, S, Shuto, Y, Taniguchi, H (1999) US Patent 5990304 (1999) Cellulose acetate excellent in physical strength and process for production thereof

  • Sjöström E (1981) Wood chemistry, fundamentals and applications, Academic Press, Inc, San Diego, CA, USA

    Google Scholar 

  • Sun XF, Sun RC, Sun JX (2004) Oleoylation of sugarcane bagasse hemicelluloses using N-bromosuccinimide as a catalyst. J Sci Food Agric 84:800–810

    Article  CAS  Google Scholar 

  • Voepel J, Edlund U, Albertsson AC (2009) Alkenyl-functionalized precursors for renewable hydrogels design. J Polym Sci A Polym Chem 47:3595–3606

    Article  CAS  Google Scholar 

  • Wing RE (1996) Starch citrate preparation and ion exchange properties. Starch/Stark 48:275–279

    Article  CAS  Google Scholar 

  • Xie X, Liu Q, Cui SW (2006) Studies on the granular structure of resistant starches (type 4) from normal, high amylose and waxy corn starch citrates. J Food Res Internat 39:332–341

    Article  CAS  Google Scholar 

  • Xu F, Sun XJ, Geng ZC, Liu CF, Ren JL, Sun RC, Fowler P, Baird MS (2007) Comparative study of water-soluble and alkali-soluble hemicelluloses from perennial ryegrass leaves (Lolium peree). Carbohydr Polym 67:56–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research project was funded by the Consortium for Plant Biotechnology, the United States Department of Energy (DE-FG36-02GO12026) and the North Carolina Forestry Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Venditti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salam, A., Pawlak, J.J., Venditti, R.A. et al. Incorporation of carboxyl groups into xylan for improved absorbency. Cellulose 18, 1033–1041 (2011). https://doi.org/10.1007/s10570-011-9542-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9542-y

Keywords

Navigation