Skip to main content
Log in

Characterization and functionalization of cellulose microbeads for extracorporeal blood purification

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In the frame of this work, cellulose microbeads with an average particle size of 2.3 μm were characterized with respect to porosity using a batch solute exclusion method and two groups of model substances, namely proteins and polystyrene sulfonates. The pores of the microbeads were almost completely accessible to proteins with Stokes radii below 2.5 nm. More than 60% of the pores were accessible to albumin, which is relevant for the application in blood purification, since many target substances are albumin bound. Activation of the microbeads with increasing amounts of sodium metaperiodate yielded matrices with dialdehyde contents between 100 and 1,000 μmol/g. The activated beads were well suited for the covalent attachment of functional ligands, such as antibodies. Immobilization of antibodies against the pro-inflammatory cytokine TNF-α resulted in efficient TNF-α adsorbents which possess application potential in extracorporeal blood purification, e.g. for the modulation of cytokine levels as supportive therapy for sepsis and other inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ash SR, Blake DE, Carr DJ, Carter C, Howard T, Makowka L (1992) Clinical effects of a sorbent suspension dialysis system in the treatment of hepatic coma (the BioLogic DT). Int J Artif Organs 15:151–161

    CAS  Google Scholar 

  • Boeden HF, Pommerening K, Becker M, Rupprich C, Holtzhauer M, Loth F, Müller R, Bertram D (1991) Bead cellulose derivates as supports for immobilization and chromatographic purification of proteins. J Chromatogr 552:389–414

    Article  CAS  Google Scholar 

  • De Oliveira W, Glasser WG (1996) Hydrogels from polysaccharides. I. Cellulose beads for chromatographic support. J Appl Polymer Sci 60:63–73

    Article  Google Scholar 

  • Falkenhagen D, Weber C, Schima H, Loth F, Rajnoch C, Vogt G, Moser H, Mitzner S (1994) Eine neue Technologie der simultanen filtration/adsorption auf der Basis einer high-speed-Rezirkulation von nano- und microspheres für die extrakorporale Blutreinigung. Biomedizinische Technik 39:105–108

    Google Scholar 

  • Falkenhagen D, Schima H, Loth F Arrangement for removing substances from liquids, in particular blood. Patent WO9504559; Japanese patent # 50 1083 (1997); United States patent #5,855,782 (1999)

  • Falkenhagen D, Strobl W, Vogt G, Schrefl A, Linsberger I, Gerner FJ, Schoenhofen M (1999) Fractionated plasma separation and adsorption system—a novel system for blood purification to remove albumin bound substances. Int J Artif Organs 23:81–86

    Article  CAS  Google Scholar 

  • Fasman GD (1976) Handbook of biochemistry and molecular biology, section A: proteins, 3rd edn. CRC press, Cleveland

    Google Scholar 

  • Grznárová G, Yu S, Štefuca V, Polakovic M (2005) Quantitative characterization of pore structure of cellulose gels with or without bound protein ligand. J Chromatogr A 1092:107–113

    Article  Google Scholar 

  • Huxley VH, Curry FE, Adamson RH (1987) Quantitative fluorescence microscopy on single capillaries: alpha-lactalbumin transport. Am J Physiol Heart Circ Physiol 252:188–197

    Google Scholar 

  • Ikeda S et al (2000) Intermolecular forces in bovine serum albumin solutions exhibiting solidlike mechanical behaviors. Biomacromolecules 1:757–763

    Article  CAS  Google Scholar 

  • Kaster JA, de Oliveira W, Glasser WG, Velander WH (1993) Optimization of pressure-flow limits, strength, intraparticle transport and dynamic capacity by hydrogel solids content and bead size in cellulose immunosorbents. J Chromatogr 648:79–90

    Article  CAS  Google Scholar 

  • Kim UJ, Kuga S (2000) Reactive interaction of aromatic amines with dialdehyde cellulose gel. Cellulose 7:287–297

    Article  CAS  Google Scholar 

  • Kuga S (1980) New cellulose gel for chromatography. J Chromatogr 195:221–230

    Article  CAS  Google Scholar 

  • Mosbach KH, Nilsson K (1983) Method of covalent binding biologically active organic substances to polymer substance. US patent 4,415,665

  • Okafor C, Ward DM, Mokrzycki MH, Weinstein R, Clark P, Balogun RA (2010) Introduction and overview of therapeutic apheresis. J Clin Apher 25:240–249

    Article  Google Scholar 

  • Peška J, Štamberg J, Hradil J, Ilavsky M (1976) Cellulose in bead form. Properties related to chromatographic uses. J Chromatogr 125:455–469

    Article  Google Scholar 

  • Potschka M (1987) Universal calibration of gel permeation chromatography and determination of molecular shape in solution. Anal Biochem 162:47–64

    Article  CAS  Google Scholar 

  • Stegmayr BG (2005) A survey of blood purification techniques. Transfus Apher Sci 32:209–220

    Article  Google Scholar 

  • Thümmler K, Fischer S, Feldner A, Weber V, Ettenauer M, Loth F, Falkenhagen D (2011) Preparation and characterization of cellulose microspheres. Cellulose 18:135–142

    Article  Google Scholar 

  • Volkert B, Wolf B, Fischer S, Li N, Lou C (2009) Applications of modified bead cellulose as a carrier of active ingredients. Macromolec Symp 280:130–135

    Article  CAS  Google Scholar 

  • Wagenknecht W, Fanter C, Loth F (1996) Process for producing spherical microparticles on the basis of cellulose acetate. European patent EP0750007

  • Weber V, Linsberger I, Ettenauer M, Loth F, Höyhtya M, Falkenhagen D (2005) Development of specific adsorbents for human tumor necrosis factor-α (TNF-α): influence of antibody immobilization on performance and biocompatibility. Biomacromolecules 6:1867–1870

    Article  Google Scholar 

  • Weber V, Hartmann J, Linsberger I, Falkenhagen D (2007) Efficient adsorption of tumor necrosis factor with an in vitro set-up of the microspheres-based detoxification system. Blood Purif 25(2):169–174

    Article  CAS  Google Scholar 

  • Weber V, Ettenauer M, Linsberger I, Loth F, Thümmler K, Feldner A, Fischer S, Falkenhagen D (2010) Functionalization and application of cellulose microparticles as adsorbents in extracorporeal blood purification. Macromol Symp 294:90–95

    Article  CAS  Google Scholar 

  • Wolf B (1998) Hydrophilic-lipophilic drug carrier systems of bead cellulose and isopropyl myristate. Drug Dev Ind Pharm 24:1007–1015

    Article  CAS  Google Scholar 

  • Wolf B, Horsch W (1991) Herstellung, Eigenschaften und Verwendung der Perlcellulose—eine Übersicht. Pharmazie 46:392–402

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Federal Government of Lower Austria (Technopol Programme) with co-financing by the European Commission (article 4, EFRE). The excellent technical assistance of Ingrid Linsberger is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoria Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ettenauer, M., Loth, F., Thümmler, K. et al. Characterization and functionalization of cellulose microbeads for extracorporeal blood purification. Cellulose 18, 1257–1263 (2011). https://doi.org/10.1007/s10570-011-9567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9567-2

Keywords

Navigation