Skip to main content
Log in

Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiata

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Four corewood types were examined from sapling trees of two clones of Pinus radiata grown in a glasshouse. Trees were grown either straight to produce normal corewood, tilted at 45° from the vertical to produce opposite corewood and compression corewood, or rocked to produce flexure corewood. Mean cellulose microfibril angle of tracheid walls was estimated by X-ray diffraction and longitudinal swelling measured between an oven dry and moisture saturated state. Lignin and acetyl contents of the woods were measured and the monosaccharide compositions of the cell-wall polysaccharides determined. Finely milled wood was analysed using solution-state 2D NMR spectroscopy of gels from finely milled wood in DMSO-d 6/pyridine-d 5. Although there was no significant difference in cellulose microfibril angle among the corewood types, compression corewood had the highest longitudinal swelling. A lignin content >32 % and a galactosyl residue content >6 % clearly divided severe compression corewood from the other corewood types. Relationships could be drawn between lignin content and longitudinal swelling, and between galactosyl residue content and longitudinal swelling. The 2D NMR spectra showed that the presence of H-units in lignin was exclusive to compression corewood, which also had a higher (1 → 4)-β-d-galactan content, defining a unique composition for that corewood type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altaner CM, Tokareva EN, Jarvis MC, Harris PJ (2010) Distribution of (1 → 4)-β-galactans, arabinogalactan proteins, xylans and (1 → 3)-β-glucans in tracheid cell walls of softwoods. Tree Physiol 30:782–793

    Article  CAS  Google Scholar 

  • Apiolaza L, Butterfield B, Chauhan S, Walker J (2011) Characterization of mechanically perturbed young stems: can it be used for wood quality screening? Ann For Sci 68:407–414

    Article  Google Scholar 

  • Archer R (1986) Growth stresses and strains in trees. Springer series in wood science. Springer, Heidelberg

    Google Scholar 

  • Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J (ed) The biochemistry of plants, vol 14. Academic Press, San Diego, pp 297–371

    Google Scholar 

  • Bacic A, Fincher GB, Stone B (eds) (2009) Chemistry, biochemistry, and biology of (1 → 3)-β-glucans and related polysaccharides. Academic Press, San Diego

  • Balakshin MY, Capanema EA, Goldfarb B, Frampton J, Kadla JF (2005) NMR studies on Fraser fir Abies fraseri (Pursh) Poir. lignins. Holzforschung 59:488–496

    Article  CAS  Google Scholar 

  • Bao W, O’Malley DM, Sederoff RR (1992) Wood contains a cell-wall structural protein. Proc Natl Acad Sci USA 89:6604–6608

    Article  CAS  Google Scholar 

  • Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472

    Article  CAS  Google Scholar 

  • Bax A (1985) A spatially selective composite 90° radiofrequency pulse. J Magn Reson 65:142–145

    Article  Google Scholar 

  • Bland DE (1958) The chemistry of reaction wood. Part I. The lignins of Eucalyptus goniocalyx and Pinus radiata. Holzforschung 12:36–43

    Article  CAS  Google Scholar 

  • Bouveng HO, Meier H (1959) Studies on a galactan from Norwegian spruce compression wood (Picea abies Karst.). Acta Chem Scand 13:1884–1889

    Article  CAS  Google Scholar 

  • Boyd JD, Foster RC (1974) Tracheid anatomy changes as responses to changing structural requirements of the tree. Wood Sci Technol 8:91–105

    Article  Google Scholar 

  • Burdon RD, Kibblewhite RP, Walker JCF, Megraw RA, Evans R, Cown DJ (2004) Juvenile versus mature wood: a new concept, orthogonal to corewood versus outerwood with special reference to Pinus radiata and P. taeda. For Sci 50:399–415

    Google Scholar 

  • Capek P, Alföldi J, Lisková D (2002) An acetylated galactoglucomannan from Picea abies L. Karst. Carbohydr Res 337:1033–1037

    Article  CAS  Google Scholar 

  • Cavagna F, Deger H, Puls J (1984) 2D-N.M.R. analysis of the structure of an aldotriouronic acid obtained from birch wood. Carbohydr Res 129:1–8

    Article  CAS  Google Scholar 

  • Cave ID (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2:268–278

    Article  Google Scholar 

  • Cave ID (1997a) Theory of X-ray measurement of microfibril angle in wood. Part 2. The diffraction diagram X-ray diffraction by materials with fibre type symmetry. Wood Sci Technol 31:225–234

    Article  CAS  Google Scholar 

  • Cave ID (1997b) Theory of X-ray measurement of microfibril angle in wood. Part I. The condition for reflection X-ray diffraction by materials with fibre type symmetry. Wood Sci Technol 31:143–152

    Article  CAS  Google Scholar 

  • Chen J, Varner JE (1985) An extracellular matrix protein in plants: characterization of a genomic clone for carrot extensin. EMBO J 4:2145–2151

    CAS  Google Scholar 

  • Colquhoun IJ, Ralet M-C, Thibault J-F, Faulds CB, Williamson G (1994) Structure identification of feruloylated oligosaccharides from sugar-beet pulp by NMR spectroscopy. Carbohydr Res 263:243–256

    Article  CAS  Google Scholar 

  • Cordero RA (1999) Ecophysiology of Cecropia schreberiana saplings in two wind regimes in an elfin cloud forest: growth, gas exchange, architecture and stem biomechanics. Tree Phys 19:153–163

    Article  Google Scholar 

  • Cowdrey DR, Preston RD (1966) Elasticity and microfibrillar angle in the wood of Sitka spruce. Proc R Soc Lond B Biol Sci 166:245–272

    Article  Google Scholar 

  • Dais P, Perlin AS (1982) High-field, 13C-N.M.R. spectroscopy of β-d-glucans, amylopectin, and glycogen. Carbohydr Res 100:103–116

    Article  CAS  Google Scholar 

  • Davis EA, Derouet C, Herve Du, Penhoat C, Morvan C (1990) Isolation and an N.M.R. study of pectins from flax (Linum usitatissimum L.). Carbohydr Res 197:205–215

    Article  CAS  Google Scholar 

  • Davis AL, Hoffmann RA, Russell AL, Debet M (1995) 1H- and 13C-NMR characterization of the digalactosylmannopentaose liberated from legume seed galactomannan by β-mannanase action. Carbohydr Res 271:43–54

    Article  CAS  Google Scholar 

  • Donaldson LA, Grace J, Downes GM (2004) Within-tree variation in anatomical properties of compression wood in radiata pine. IAWA J 25:253–271

    Google Scholar 

  • Dudley RL, Fyfe CA, Stephenson PJ, Deslandes Y, Hamer GK, Marchessault RH (1983) High-resolution carbon-13 CP/MAS NMR spectra of solid cellulose oligomers and the structure of cellulose II. J Am Chem Soc 105:2469–2472

    Article  CAS  Google Scholar 

  • Evans R (1999) A variance approach to the X-ray diffractometric estimation of microfibril angle in wood. Appita J 52:283–289, 294

    Google Scholar 

  • Excoffier G, Nardin R, Vignon MR (1986) Détermination de la structure primaire d’un acide tri-d-xylo-4-O-méthyl-d-glucuronique par R.M.N. à deux dimensions. Carbohydr Res 149:319–328

    Article  Google Scholar 

  • Floyd S (2005) Effect of hemicellulose on longitudinal shrinkage in wood. In: Entwistle KM, Walker JCF (eds) The hemicelluloses workshop 2005. The Wood Technology Research Centre, Christchurch, pp 115–120

    Google Scholar 

  • Flugge LA, Blank JT, Petillo PA (1999) Isolation, modification, and NMR assignments of a series of cellulose oligomers. J Am Chem Soc 121:7228–7238

    Article  CAS  Google Scholar 

  • Girault R, Bert F, Rihouey C, Jauneau A, Morvan C, Jarvis M (1997) Galactans and cellulose in flax fibres: putative contributions to the tensile strength. Int J Biol Macromol 21:179–188

    Article  CAS  Google Scholar 

  • Goellner EM, Utermoehlen J, Kramer R, Classen B (2011) Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydr Polym 86:1739–1744

    Article  CAS  Google Scholar 

  • Ha M-A, Viëtor RJ, Jardine GD, Apperley DC, Jarvis MC (2005) Conformation and mobility of the arabinan and galactan side-chains of pectin. Phytochemistry 66:1817–1824

    Article  CAS  Google Scholar 

  • Habibi Y, Vignon MR (2005) Isolation and characterization of xylans from seed pericarp of Argania spinosa fruit. Carbohydr Res 340:1431–1436

    Article  CAS  Google Scholar 

  • Habibi Y, Mahrouz M, Marais M-F, Vignon MR (2004) An arabinogalactan from the skin of Opuntia ficus-indica prickly pear fruits. Carbohydr Res 339:1201–1205

    Article  CAS  Google Scholar 

  • Hannuksela T, Hervé du Penhoat C (2004) NMR structural determination of dissolved O-acetylated galactoglucomannan isolated from spruce thermomechanical pulp. Carbohydr Res 339:301–312

    Article  CAS  Google Scholar 

  • Harris PJ (2005) Diversity in plant cell walls. In: Henry RJ (ed) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CAB International Publishing, Wallingford, pp 201–227

    Chapter  Google Scholar 

  • Harris JM, Meylan BA (1965) The influence of microfibril angle on longitudinal and tangential shrinkage in Pinus radiata. Holzforschung 19:144–153

    Article  Google Scholar 

  • Harris PJ, Stone BA (2008) Chemistry and molecular organization of plant cell walls. In: Himmel ME (ed) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell, Oxford, pp 61–93

    Google Scholar 

  • Hoffman GC, Timell TE (1970) Isolation of a β-1,3-glucan (laricinan) from compression wood of Larix laricina. Wood Sci Technol 4:159–162

    Article  Google Scholar 

  • Iiyama K, Lam TBT, Kasuya N, Stone BA (1994) Rapid and simple determination of O-acetyl groups bound to plant cell walls by acid hydrolysis and 1H-NMR measurement. Phytochemistry 35:959–961

    Article  CAS  Google Scholar 

  • Jensen JK, Kim H, Cocuron J-C, Orler R, Ralph J, Wilkerson CG (2011) The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J 66:387–400

    Article  CAS  Google Scholar 

  • Johansson G, Kliger R, Perstorper M (1994) Quality of structural timber-product specification system required by end-users. Holz Als Roh-Und Werkstoff 52:42–48

    Article  Google Scholar 

  • Katz G (1965) The location and significance of the O-acetyl groups in a glucomannan from Paraña pine. Tappi J 48:34–41

    CAS  Google Scholar 

  • Kern KA, Ewers FW, Telewski FW, Koehler L (2005) Mechanical perturbation affects conductivity, mechanical properties and aboveground biomass of hybrid poplars. Tree Physiol 25:1243–1251

    Article  Google Scholar 

  • Kim H, Ralph J (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d 6 /pyridine-d 5 . Org Biomol Chem 8:576–591

    Article  CAS  Google Scholar 

  • Kim H, Ralph J, Akiyama T (2008) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d 6 . Bioenergy Res 1:65–66

    Article  Google Scholar 

  • Lange BM, Lapierre C, Sandermann H Jr (1995) Elicitor-induced spruce stress lignin (structural similarity to early developmental lignins). Plant Physiol 108:1277–1287

    CAS  Google Scholar 

  • Lu F, Ralph J (2003) Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR. Plant J 35:535–544

    Google Scholar 

  • Lundqvist J, Teleman A, Junel L, Zacchi G, Dahlman O, Tjerneld F, Stålbrand H (2002) Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydr Res 48:29–39

    CAS  Google Scholar 

  • McCleary BV, Nurthen E, Taravel FR, Joseleau J-P (1983) Characterisation of the oligosaccharides produced on hydrolysis of galactomannan with β-d-mannanase. Carbohydr Res 118:91–109

    Article  CAS  Google Scholar 

  • Meylan BA (1968) Cause of high longitudinal shrinkage in wood. For Prod J 18:75–78

    Google Scholar 

  • Mickovski SB, Ennos AR (2003) The effect of unidirectional stem flexing on shoot and root morphology and architecture in young Pinus sylvestris trees. Can J For Res 33:2202–2209

    Article  Google Scholar 

  • Moulthrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 12:1557–1559

    Article  Google Scholar 

  • Nanayakkara B, Manley-Harris M, Suckling ID, Donaldson LA (2009) Quantitative chemical indicators to assess the gradation of compression wood. Holzforschung 63:431–439

    Article  CAS  Google Scholar 

  • Preston RD (1946) The fine structure of the wall of the conifer tracheid. I. The X-ray diagram of conifer wood. Proc R Soc Lond Ser B Biol Sci 133:327–348

    Article  CAS  Google Scholar 

  • Pruyn ML, Ewers BJ, Telewski FW (2000) Thigmomorphogenesis: changes in the morphology and mechanical properties of two Populus hybrids in response to mechanical perturbation. Tree Physiol 20:535–540

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. http://www.R-project.org

  • Rencoret J, Gutiérrez A, Nieto L, Jiménez-Barbero J, Faulds CB, Kim H, Ralph J, Martínez ÁT, del Río JC (2011) Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiol 155:667–682

    Article  CAS  Google Scholar 

  • Ryden P, MacDougall AJ, Tibbits CW, Ring SG (2000) Hydration of pectic polysaccharides. Biopolymers 54:398–405

    Article  CAS  Google Scholar 

  • Scurfield G (1973) Reaction wood: its structure and function. Science 179:647–655

    Article  CAS  Google Scholar 

  • Smith BG, Harris PJ (1995) Polysaccharide composition of unlignified cell walls of pineapple [Ananas comosus (L.) Merr.] fruit. Plant Physiol 107:1399–1409

    Article  CAS  Google Scholar 

  • T 249 cm-85 (1985) Carbohydrate composition of extractive-free wood and wood pulp by gas-liquid chromatography. TAPPI

  • Teleman A, Lundqvist J, Tjerneld F, Stålbrand H, Dahlman O (2000) Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr Res 329:807–815

    Article  CAS  Google Scholar 

  • Teleman A, Nordström M, Tenkanan M, Jacobs A, Dahlman O (2003) Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydr Res 338:525–534

    Article  CAS  Google Scholar 

  • Telewski FW (1989) Structure and function of flexure wood in Abies fraseri. Tree Physiol 5:113–121

    Google Scholar 

  • Telewski FW (1995) Wind-induced physiological and developmental responses in trees. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 237–263

  • Telewski FW, Jaffe MJ (1981) Thigmorphogenesis: changes in the morphology and chemical composition induced by mechanical perturbation in 6-month-old Pinus taeda seedlings. Can J For Res 11:380–387

    Article  Google Scholar 

  • Telewski FW, Jaffe MJ (1986a) Thigmorphogenesis: anatomical, morphological and mechanical analysis of genetically different sibs of Pinus taeda in response to mechanical perturbation. Physiol Plant 66:219–226

    Article  CAS  Google Scholar 

  • Telewski FW, Jaffe MJ (1986b) Thigmorphogenesis: field and laboratory studies of Abies fraseri in response to wind or mechanical perturbation. Physiol Plant 66:211–218

    Article  CAS  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms, vol 3. Springer, Berlin

    Google Scholar 

  • Turnbull CM, Baxter AL, Johnson SK (2005) Water-binding capacity and viscosity of Australian sweet lupin kernel fibre under in vitro conditions simulating the human upper gastrointestinal tract. Int J Food Sci Nutr 56:87–94

    Article  CAS  Google Scholar 

  • Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2008) BioMagResBank. Nucleic Acids Res 36(suppl 1):D402–D408

    CAS  Google Scholar 

  • van Hazendonk JM, Reinerik EJM, de Waard P, van Dam JEG (1996) Structural analysis of acetylated hemicellulose polysaccharides from fibre flax (Linum usitatissimum L.). Carbohydr Res 291:141–154

    Article  Google Scholar 

  • Vignon MR, Gey C (1998) Isolation, 1H and 13C NMR studies of (4-O-methyl-glucurono)-xylans from luffa fruit fibres, jute bast fibres and mucilage of quince tree seeds. Carbohydr Res 307:107–111

    Article  CAS  Google Scholar 

  • Westermark U (1985) The occurrence of p-hydroxyphenylpropane units in the middle-lamella lignin of spruce (Picea abies). Wood Sci Technol 19:223–232

    Article  CAS  Google Scholar 

  • Whistler RL, Chen C–C (1991) Hemicellulose. In: Lewin M, Goldstein IS (eds) Wood structure and composition. International fiber science and technology, vol 11. Marcel Dekker, New York, pp 287–319

  • Willför S, Sjöholm R, Laine C, Roslund M, Hemming J, Holmbom B (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohydr Polym 52:175–187

    Article  Google Scholar 

  • Yamamoto H (1998) Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation. Wood Sci Technol 32:171–182

    CAS  Google Scholar 

  • Yamamoto H, Sassus F, Ninomiya M, Gril J (2001) A model of anisotropic swelling and shrinking process of wood. Part 2. A simulation of shrinking wood. Wood Sci Technol 35:167–181

    Article  CAS  Google Scholar 

  • Yelle DJ, Ralph J, Frihart CR (2008) Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy. Magn Reson Chem 46:508–517

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank our colleagues at the University of Canterbury (Luis Apiolaza, Shakti Chauhan and John Walker) for provision of the wood samples, Heather Free, University of Auckland, for NMR spectroscopy of the polysaccharide and oligosaccharide standards and Michael Schmitz, University of Auckland, for assistance with the NMR spectroscopy. This work was supported by the New Zealand Foundation for Research, Science and Technology (PROJ-12401-PPS_UOC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brennan, M., McLean, J.P., Altaner, C.M. et al. Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiata . Cellulose 19, 1385–1404 (2012). https://doi.org/10.1007/s10570-012-9697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9697-1

Keywords

Navigation