Skip to main content
Log in

Role of urea in alkaline dissolution of cellulose

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

To elucidate the role of urea in dissolution of cellulose in aqueous alkali-urea solvent, the dissolution process was monitored by differential scanning calorimetry and X-ray diffractometry. Urea had no direct interaction with cellulose in dissolution process, but promoted the decrease of crystallinity. Moreover, the addition of urea increased the dissolved fraction of cellulose in the solvent by 1.5–2.5 times and improved the thermal stability of the solution. Urea might help alkali hydrate to penetrate into crystalline region of cellulose by stabilizing the alkali-swollen cellulose molecules, leading to an increase in dissolved fraction of cellulose. This stabilization may be due to the local accumulation of urea on the hydrophobic surface, preventing the hydrophobic association of dissolved cellulose molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bergenstrahle-Wohlert M, Berglund LA, Brady JW, Larsson PT, Westlund P, Wohlert J (2012) Concentration enrichment of urea at cellulose surfaces: results from molecular dynamics simulations and NMR spectroscopy. Cellulose 19:1–12

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–549

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 8:1572–1579

    Article  CAS  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1:149–154

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15:361–370

    Article  CAS  Google Scholar 

  • Glasser WG, Atalla RH, Blackwell J, Brown RM, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19:589–598

    Article  CAS  Google Scholar 

  • Hongo T, Yamane C, Saito M, Okajima K (1996) Super-molecular structures controlling the swelling behavior of regenerated cellulose membranes. Polym J 28:769–779

    Article  CAS  Google Scholar 

  • Isobe N, Kimura S, Wada M, Kuga S (2012) Mechanism of cellulose gelation from aqueous alkali-urea solution. Carbohydr Polym 89:1298–1300

    Article  CAS  Google Scholar 

  • Isogai A (1997a) NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose 4:99–107

    Article  CAS  Google Scholar 

  • Isogai A (1997b) Properties of handsheets containing cellulose regenerated from cellulose/aqueous NaOH solution. Sen’i Gakkaishi 53:96–100

    Article  CAS  Google Scholar 

  • Isogai A, Atalla RH (1995) Alkaline method for dissolving cellulose. US patent 5410034

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Jeffries R, Warwicker JO (1969) The function of swelling in the finishing of cotton. Textile Res J 39:548–559

    Article  CAS  Google Scholar 

  • Kamide K, Saito M (1986) Light scattering and viscometric study of cellulose in aqueous lithium hydroxide. Polym J 18:569–579

    Article  CAS  Google Scholar 

  • Kamide K, Okajima K, Matsui T, Kowsaka K (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polym J 16:857–866

    Article  CAS  Google Scholar 

  • Kamide K, Kowsaka K, Okajima K (1985) Determination of intramolecular hydrogen bonds and selective coordination of sodium cation in alkalicellulose by CP/MASS 13C NMR. Polym J 17:707–711

    Article  CAS  Google Scholar 

  • Kamide K, Okajima K, Kowsaka K (1992) Dissolution of natural cellulose into aqueous alkali solution: role of super-molecular structure of cellulose. Polym J 24:71–86

    Article  CAS  Google Scholar 

  • Kunze J, Fink HP (2005) Structural changes and activation of cellulose by caustic soda solution with urea. Macromol Symp 223:175–187

    Article  CAS  Google Scholar 

  • Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    Article  CAS  Google Scholar 

  • Lu A, Liu Y, Zhang L, Potthast A (2011) Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B 115:12801–12808

    Article  CAS  Google Scholar 

  • Lue A, Liu Y, Zhang L, Potthas A (2011) Light scattering study on the dynamic behaviour of cellulose inclusion complex in LiOH/urea aqueous solution. Polymer 52:3857–3864

    Article  CAS  Google Scholar 

  • Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587

    Article  CAS  Google Scholar 

  • Nishimura H, Okano T, Sarko A (1991) Mercerization of cellulose. 5. Crystal and molecular structure of Na-cellulose I. Macromolecules 24:759–770

    Article  CAS  Google Scholar 

  • Okano T, Sarko A (1984) Mercerization of cellulose. I. X-ray diffraction evidence for intermediate structures. J Appl Polym Sci 29:4175–4182

    Article  CAS  Google Scholar 

  • Porro F, Bédué O, Chanzy H, Heux L (2007) Solid-state 13C NMR study of Na–cellulose complexes. Biomacromolecules 8:2586–2593

    Article  CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787

    Article  CAS  Google Scholar 

  • Schwarzkoph O (1932) Zur Kenntnis der Alkalicellulose. Z Elektrochem 38:353–358

    Google Scholar 

  • Shimizu S (2011) The effect of urea on hydrophobic hydration: preferential interaction and the enthalpy of transfer. Chem Phys Lett 517:76–79

    Article  CAS  Google Scholar 

  • Sobue H, Kiessig H, Hess K (1939) Das system cellulose-Natriumhydroxyd-Wasser in abhängigkeit von der temperatur. Z Physik Chem B 43:309–328

    Google Scholar 

  • Tanford C (1964) Isothermal unfolding of globular proteins in aqueous urea solutions. J Am Chem Soc 86:2050–2059

    Article  CAS  Google Scholar 

  • Wada M, Okano T (2001) Localization of Iα and Iβ phases in algal cellulose revealed by acid treatments. Cellulose 8:183–188

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232

    Article  CAS  Google Scholar 

  • Wang Y, Deng Y (2009) The kinetics of cellulose dissolution in sodium hydroxide solution at low temperatures. Biotechnol Bioeng 102:1398–1405

    Article  CAS  Google Scholar 

  • Warwicker JO, Jeffries R, Colbran RL, Robinson RN (1966) A review of the literature on the effect of caustic soda and other swelling agents on the fine structure of cotton. The cotton silk and man-made fibres research association, Manchester

    Google Scholar 

  • Yamane C, Mori M, Saito M, Okajima K (1996) Structures and mechanical properties of cellulose filament spun from cellulose/aqueous NaOH solution system. Polym J 28:1039–1047

    Article  CAS  Google Scholar 

  • Yamashiki T, Kamide K, Okajima K, Kowsaka K, Matsui T, Fukase H (1988) Some characteristic features of dilute aqueous alkali solutions of specific alkali concentration (2.5 mol l−1) which possess maximum solubility power against cellulose. Polym J 20:447–457

    Article  CAS  Google Scholar 

  • Yamashiki T, Matsui T, Saitoh M, Okajima K, Kamide K, Sawada T (1990) Characterisation of cellulose treated by the steam explosion method. Part 2: effect of treatment conditions on changes in morphology, degree of polymerisation, solubility in aqueous sodium hydroxide and supermolecular structure of soft wood pulp during steam explosion. Br Polym J 22:121–128

    Article  CAS  Google Scholar 

  • Zangi R, Zhou R, Berne BJ (2009) Urea’s action on hydrophobic interactions. J Am Chem Soc 131:1535–1541

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by a Grant-in-Aid for Scientific Research (No. 23580226) and a Grant-in-Aid for JSPS fellows (No. 24-7759). N.I. acknowledges financial support from JSPS Research Fellowship for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Isobe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isobe, N., Noguchi, K., Nishiyama, Y. et al. Role of urea in alkaline dissolution of cellulose. Cellulose 20, 97–103 (2013). https://doi.org/10.1007/s10570-012-9800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9800-7

Keywords

Navigation