Skip to main content

Advertisement

Log in

Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The consecutive pre-treatment of cellulose with periodate and bisulfite was used as a new potential method to promote nanofibrillation of hardwood pulp and to obtain nanofibrils with sulfonated functionality. Nanofibrils having typical widths of 10–60 nm were obtained from sulfonated celluloses having low anionic charge densities (0.18–0.51 mmol/g) by direct high-pressure homogenization without the use of any mechanical pre-treatments. The aqueous nanofibrils existed as highly viscous and transparent gels and possessed cellulose I crystalline structures with crystallinity indexes of approximately 40 %. A transparent film was obtained from sulfonated nanofibrils having tensile strength of 164 ± 4 MPa and Young’s modulus of 13.5 ± 0.4 MPa. Oxidative sulfonation was shown to be a potential green method to promote nanofibrillation of cellulose, as it avoids the production of halogenated wastes, because the periodate used can be efficiently regenerated and recycled as shown in the preliminary experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    Article  CAS  Google Scholar 

  • Bledzki AK, Reihmane S, Gassan JJ (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336

    Article  CAS  Google Scholar 

  • Calvini P, Conio G, Lorenzoni M, Pedemonte E (2004) Viscometric determination of dialdehyde content in periodate oxycellulose. Part I. Methodology. Cellulose 11:99–107

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2006) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60:53–58

    Article  CAS  Google Scholar 

  • Fahlén J, Salmén L (2005) Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6:433–438

    Article  Google Scholar 

  • Hearon WM, Witte JF, Lo CF (1978) Process for the production of dialdehyde cellulose from cellulose. US Patent 4,082,743

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:815–827

    Google Scholar 

  • Katz S, Beatson RP, Scallan AM (1984) The determination of strong and weak acidic groups in sulphite pulps. Svensk Papperstidn 65:795–816

    Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433

    Article  CAS  Google Scholar 

  • Liimatainen H, Haapala A, Tomperi J, Niinimäki J (2009a) Fibre floc morphology and dewaterability of a pulp suspension: role of flocculation kinetics and characteristics of flocculation agents. BioResources 4:640–658

    CAS  Google Scholar 

  • Liimatainen H, Haavisto S, Haapala A, Niinimäki J (2009b) Influence of adsorbed and soluble carboxymethyl cellulose on fibre suspension dispersing, dewaterability and fines retention. BioResources 4:321–340

    CAS  Google Scholar 

  • Liimatainen H, Sirviö J, Haapala A, Hormi O, Niinimäki J (2011) Characterization of highly accessible cellulose microfibers generated by wet stirred media milling. Carbohydr Polym 83:2005–2010

    Article  CAS  Google Scholar 

  • Liimatainen H, Visanko M, Sirviö J, Hormi O, Niinimäki J (2012a) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromolecules 13:1592–1597

    Article  CAS  Google Scholar 

  • Liimatainen H, Sirviö J, Sundman O, Hormi O, Niinimäki J (2012b) Use of nanoparticular and soluble anionic celluloses in coagulation–flocculation treatment of kaolin suspension. Water Res 1:2156–2166

    Google Scholar 

  • Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641

    Article  CAS  Google Scholar 

  • Maekawa E, Koshijima TJ (1984) Properties of 2,3-dicarboxyl cellulose combined with various metal ions. J Appl Polym Sci 29:2289–2297

    Article  CAS  Google Scholar 

  • Mishra SP, Manent AS, Chabot B, Daneault CJ (2012) Production of nanocellulose from native cellulose—various options utilizing ultrasound. Wood Chem Technol 32:137–148

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 78:547–552

    Article  CAS  Google Scholar 

  • Nikiforova TE, Kozlov VA, Russ J (2011) Sorption of copper (II) cations from aqueous media by a cellulose-containing sorbent. Gen Chem 81:2136–2141

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg MJ, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Rattaz A, Mishra SP, Chabot B, Daneault C (2011) Cellulose nanofibres by sonocatalysed-TEMPO-oxidation. Cellulose 18:585–593

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An X-ray diffraction study of the conformation cellulose chain. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Shet RT, Wallajabet PRR (1997) Sulfonated cellulose having improved absorbent properties. US Patent 5,703,225

  • Sirviö J, Hyväkkö U, Liimatainen H, Niinimäki J, Hormi O (2011) Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydr Polym 83:1293–1297

    Article  Google Scholar 

  • Zhang J, Jiang N, Dang Z, Elder TJ, Ragauskas AJ (2008) Oxidation and sulfonation of cellulosics. Cellulose 15:489–496

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by The Academy of Finland (Postdoctoral project No. 250940). The Wallenberg Wood Science Center, KTH, Sweden is acknowledged for the opportunity to use the mechanical tester.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrikki Liimatainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liimatainen, H., Visanko, M., Sirviö, J. et al. Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20, 741–749 (2013). https://doi.org/10.1007/s10570-013-9865-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9865-y

Keywords

Navigation