Skip to main content
Log in

The effect of wall depletion on the rheology of microfibrillated cellulose water suspensions by optical coherence tomography

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Rheology of microfibrillated cellulose (MFC) water suspensions was characterized with a rotational rheometer, augmented with optical coherence tomography (OCT). To the best of the authors’ knowledge, this is the first time the behavior of MFC in the rheometer gap was characterized by this real-time imaging method. Two concentrations, 0.5 and 1 wt% were used, the latter also with 10−3 and 10−2 M NaCl. The aim was to follow the structure of the suspensions in a rotational rheometer during the measurements and observe wall depletion and other factors that can interfere with the rheological results. The stepped flow measurements were performed using a transparent cylindrical measuring system and combining the optical information to rheological parameters. OCT allows imaging in radial direction from the outer geometry boundary to the inner geometry boundary making both the shear rate profile and the structure of the suspension visible through the rheometer gap. Yield stress and maximum wall stress were determined by start-up of steady shear and logarithmic stress ramp methods and they both reflected in the stepped flow measurements. Above yield stress, floc size was inversely proportional to shear rate. Below the yield stress, flocs adhered to each other and the observed apparent constant shear stress was controlled by flow in the depleted boundary layer. With higher ionic strength (10−2 M NaCl), the combination of yield stress and wall depletion favored the formation of vertical, cylindrical, rotating floc structures (rollers) coupled with a thicker water layer originating at the suspension—inner cylinder boundary at low shear rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier J-L (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686

    Article  CAS  Google Scholar 

  • Agoda-Tandjawa G, Durand S, Gaillard C, Garnier C, Doublier J-L (2012) Rheological behavior and microstructure of microfibrillated cellulose suspensions/low-methoxyl pectin mixed systems. Effect of calcium ions. Carbohydr Polym 87:1045–1057

    Article  CAS  Google Scholar 

  • Ahola S, Myllytie P, Österberg M, Teerinen T, Laine J (2008) Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. BioResources 3:1315–1328

    Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Non Newton Fluid Mech 56:221–251

    Article  CAS  Google Scholar 

  • Björkman U (2005) Floc dynamics in flowing fiber suspensions. Nord Pulp Pap Res J 20:247–252

    Article  Google Scholar 

  • Björkman U (2006) The metarheology of crowded fiber suspensions. Annu Trans Nord Rheol Soc 14:69–78

    Google Scholar 

  • Blanc F, Peters F, Lemaire E (2011) Local transient rheological behavior of concentrated suspensions. J Rheol 55:835–854

    Article  CAS  Google Scholar 

  • Celzard A, Fierro V, Kerekes R (2009) Flocculation of cellulose fibers: new comparison of crowding factor with percolation and effective-medium theories. Cellulose 16:983–987

    Article  CAS  Google Scholar 

  • Cheng DC (1986) Yield stress: a time-dependent property and how to measure it. Rheol Acta 25:542–554

    Article  CAS  Google Scholar 

  • Derakhshandeh B, Hatzikiriakos SG, Bennington CPJ (2010) The apparent yield stress of pulp fiber suspensions. J Rheol 54:1137–1154

    Article  CAS  Google Scholar 

  • Derakhshandeh B, Kerekes RJ, Hatzikiriakos SG, Bennington CPJ (2011) Rheology of pulp fiber suspensions: a critical review. Chem Eng Sci 66:3460–3470

    Article  CAS  Google Scholar 

  • Eronen P, Junka K, Laine J, Österberg M (2011) Interaction between water-soluble polysaccharides and native nanofibrillar cellulose thin films. BioResources 6:4200–4217

    CAS  Google Scholar 

  • Fisher DT, Clayton SA, Boger DV, Scales PJ (2007) The bucket rheometer for shear stress-shear rate measurement of industrial suspensions. J Rheol 51:821–831

    Article  CAS  Google Scholar 

  • Hill RJ (2008) Elastic modulus of microfibrillar cellulose gels. Biomacromolecules 9:2963–2966

    Article  CAS  Google Scholar 

  • Hubbe MA (2007) Flocculation and redispersion of cellulosic fiber suspension: a review of effects of hydrodynamic shear and polyelectrolytes. BioResources 2:296–331

    CAS  Google Scholar 

  • Hubbe MA, Rojas OJ (2008) Colloidal stability and aggregation of lignocellulosic materials in aqueous suspension: a review. BioResources 3:1419–1491

    Google Scholar 

  • Iotti M, Gregersen OW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145

    Article  CAS  Google Scholar 

  • Jäsberg A, Kataja M (2009) New experimental results on the flow regimes in closed channel flows of wood fiber suspensions. Advances in pulp and paper research, 14th fundamental research symposium, Oxford, England, pp 161–180

  • Karppinen A, Vesterinen A, Saarinen T, Pietikäinen P, Seppälä J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18:1381–1390

    Article  CAS  Google Scholar 

  • Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19:1807–1819

    Article  CAS  Google Scholar 

  • Kasai C, Namekawa K, Koyano A, Omoto R (1985) Real-time two-dimensional blood flow imaging using an autocorrelation technique. IEEE Trans Sonics Ultrason 32:458–464

    Article  Google Scholar 

  • Kerekes RJ, Schell CJ (1992) Characterization of fiber flocculation regimes by a crowding factor. J Pulp Pap Sci 18:32–38

    CAS  Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433

    Article  CAS  Google Scholar 

  • Liimatainen H, Haapala A, Tomperi J, Niinimäki J (2009) Fiber floc morphology and dewaterability of a pulp suspension: role of flocculation kinetics and characteristics of flocculation agents. BioResources 4:640–658

    CAS  Google Scholar 

  • Lowys M, Desbrières J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15:25–32

    Article  CAS  Google Scholar 

  • Mosse WKJ, Boger DV, Garnier G (2012) Avoiding slip in pulp suspension rheometry. J Rheol 56:1517–1533

    Article  CAS  Google Scholar 

  • Nguyen QD, Boger DV (1983) Yield stress measurement for concentrated suspensions. J Rheol 27:321–349

    Article  Google Scholar 

  • Nguyen QD, Boger DV (1985) Direct yield stress measurement with the vane method. J Rheol 29:335–347

    Article  Google Scholar 

  • Ntalikwa JW (2007) Determination of surface charge density of α-alumina by acid-base titration. Bull Chem Soc Ethiop 21:117–128

    Article  CAS  Google Scholar 

  • Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69:1958–1961

    Article  CAS  Google Scholar 

  • Ono H, Shimaya Y, Hongo T, Yamane C (2001) New aqueous dispersion of cellulose sub-micron particles: preparation and properties of transparent cellulose hydrogel (TCG). Trans Mater Res Soc Jpn 26:569–572

    CAS  Google Scholar 

  • Ono H, Shimaya Y, Sato K, Hongo T (2004) 1H spin–spin relaxation time of water and rheological properties of cellulose nanofiber dispersion, transparent cellulose hydrogel (TCG). Polym J 36:684–694

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR (1992) A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys Fluids A4:30–40

    Article  Google Scholar 

  • Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19:647–659

    Article  CAS  Google Scholar 

  • Salmela J, Kataja M (2005) Floc rupture and re-flocculation in turbulent shear flow. Advances in paper science and technology, 13th fundamental research symposium, Cambridge, England, pp 35–50

  • Salmela J, Haavisto S, Koponen A, Jäsberg A, Kataja M (2013) Rheological characterization of micro-fibrillated cellulose fiber suspension using multi scale velocity profile measurements. Advances in pulp and paper research, 15th fundamental research symposium, Cambridge, England, p 495

  • Scott-Blair GW (1958) The importance of the sigma phenomenon in the study of the flow of blood. Rheol Acta 1(2-3):123–126

    Article  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Starkey TV (1956) Instability of uniform concentration conditions in suspensions under shear. Nature 178:207–208

    Article  Google Scholar 

  • Swerin A, Ödberg L, Lindström T (1990) Deswelling of hardwood kraft pulp fibers by cationic polymers. Nord Pulp Pap Res J 5:188–196

    Article  CAS  Google Scholar 

  • Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Vartiainen J, Pöhler T, Sirola K, Pylkkänen L, Alenius H, Hokkinen J, Tapper U, Lahtinen P, Kapanen A, Putkisto K, Hiekkataipale P, Eronen P, Ruokolainen J, Laukkanen A (2011) Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 18:775–786

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the EffNet program in Finnish Forest Cluster Ltd. Panu Lahtinen from VTT is acknowledged for preparing the microfibrillated cellulose. AS would like to acknowledge the Graduate School of Chemical Engineering for funding. We also gratefully acknowledge valuable co-operation network of COST ACTION FP 1005 (Fibre Suspension Flow Modelling) and ERCOFTAG SIG 43 (Fibre Suspension Flows).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Seppälä.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saarinen, T., Haavisto, S., Sorvari, A. et al. The effect of wall depletion on the rheology of microfibrillated cellulose water suspensions by optical coherence tomography. Cellulose 21, 1261–1275 (2014). https://doi.org/10.1007/s10570-014-0187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0187-5

Keywords

Navigation