Skip to main content
Log in

Determination of nanocellulose fibril length by shear viscosity measurement

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The lengths of ten types of cellulose nanofibrils were evaluated by shear viscosity measurement of their dilute dispersions. Aqueous dispersions of surface-carboxylated cellulose nanofibrils with a uniform width of ~3 nm were prepared from wood cellulose by 2,2,6,6-tetramethylpiperidine-1-oxyl-mediated oxidation and successive mechanical treatment. Cellulose nanofibril samples with different average lengths were prepared by controlling the conditions of the oxidation or mechanical treatment. The viscosity-average lengths, L visc, of the nanofibrils were calculated by applying the shear viscosities of the dilute dispersions to an equation for the dilute region flow behavior of rod-like polymer molecules. The obtained L visc values ranged from 1,100 to 2,500 nm and showed a linear relationship to the length-weighted average length, L w, measured by microscopic observation; the relation was described as L visc = 1.764 × L w + 764. The influences of the electric double-layer of the nanofibrils and surface-carboxylate content on the value of L visc were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Araki J (2013) Electrostatic or steric?–preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter 9:4125–4141

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  • Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloid Surf A 377:297–303

    Article  CAS  Google Scholar 

  • Brown RM Jr, Saxena IM, Kudlicka K (1996) Cellulose biosynthesis in higher plants. Trends Plant Sci 1:149–156

    Article  Google Scholar 

  • Carr ME Jr, Hermans J (1978) Size and density of fibrin fibers from turbidity. Macromolecules 11:46–50

    Article  CAS  Google Scholar 

  • Dimic-Misic K, Puisto A, Gane P, Nieminen K, Alava M, Paltakari J, Maloney T (2013) The role of MFC/NFC swelling in the rheological behavior and dewatering of high consistency furnishes. Cellulose 20:2847–2861

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New York

    Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194

    Article  CAS  Google Scholar 

  • Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13:1688–1699

    Article  CAS  Google Scholar 

  • Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484

    Article  CAS  Google Scholar 

  • Ishii D, Saito T, Isogai A (2011) Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 12:548–550

    Article  CAS  Google Scholar 

  • Ishii D, Saito T, Isogai A (2012) Correction to viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 13:1706

    Article  CAS  Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Elsevier, London

    Google Scholar 

  • Iwamoto S, Lee S-H, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46:73–76

    Article  CAS  Google Scholar 

  • Mason SG (1950) The motion of fibers in flowing liquids. Pulp Pap Mag Can 51:93–100

    CAS  Google Scholar 

  • Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700

    Article  CAS  Google Scholar 

  • Parra-Vasquez ANG, Stepanek I, Davis VA, Moore VC, Haroz EH, Shaver J, Hauge RH, Smalley RE, Pasquali M (2007) Simple length determination of single-walled carbon nanotubes by viscosity measurements in dilute suspensions. Macromolecules 40:4043–4047

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253

    Article  CAS  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660

    Article  CAS  Google Scholar 

  • Saxena IM, Brown RM Jr (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21

    Article  CAS  Google Scholar 

  • Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Tanaka R, Saito T, Isogai A (2012) Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int J Biol Macromol 51:228–234

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants-in-Aids for Scientific Research (grant numbers 21228007, 23688020, and 201307645) from the Japan Society for the Promotion of Science (JSPS). We would like to thank Dr. Takehiko Uematsu and Anton Paar Japan K. K. for their assistance in shear viscosity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Isogai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 238 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, R., Saito, T., Ishii, D. et al. Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21, 1581–1589 (2014). https://doi.org/10.1007/s10570-014-0196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0196-4

Keywords

Navigation