Skip to main content
Log in

Enhancement of the fermentation process and properties of bacterial cellulose: a review

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose produced by bacteria (BC) has attracted increasing interest in view of its superior properties with respect to nanofibrillar structure, high purity and biocompatibility. Despite the intensive research, industrial production of BC has been limited, due to the low productivity, and the high cost of raw materials. This paper reviews the new approaches tried recently to get BC production feasible at large scale as the reduction in the quality of raw materials, the use of by-products and the optimization of the culture method. In addition, the new trends of enhancing specific properties of BC by varying culture conditions or by using additives have been reviewed. Thus, the paper presents how to obtain and enhance a desired property of BC for a specific use. This new approach will help researchers to develop new ideas in this field which will favour the commercialization of products made with BC and their industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Albu MG, Vuluga Z, Panaitescu DM, Vuluga DM, Casarica A, Ghiurea M (2014) Morphology and thermal stability of bacterial cellulose/collagen composites. Cent Eur J Chem 12:968–975

    Article  CAS  Google Scholar 

  • Al-Gelawi MH, Hameed ND, Jasim HM (2012) Isolation, identification and the role of plasmid of cellulose producing Gluconacetobacter xylinus. J Plant Mol Biol Biotechnol 3:16–20

    Google Scholar 

  • Ambrosio-Martín J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2015) Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties. Cellulose 22:1201–1226

    Article  CAS  Google Scholar 

  • Amin M, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohyd Polym 88:465–473

    Article  CAS  Google Scholar 

  • Ausmees N, Jonsson H, Hoglund S, Ljunggren H, Lindberg M (1999) Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii. Microbiology 145:1253–1262

    Article  CAS  Google Scholar 

  • Aydin YA, Aksoy ND (2009) Isolation of cellulose producing bacteria from wastes of vinegar fermentation. WCECS 2009: World congress on engineering and computer science, vols I and II. Int Assoc Engineers-Iaeng, Hong Kong

  • Aydin YA, Aksoy ND (2014) Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol 98:1065–1075

    Article  CAS  Google Scholar 

  • Bae S, Shoda M (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Progr 20:1366–1371

    Article  CAS  Google Scholar 

  • Bae SO, Shoda M (2005) Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl Microbiol Biotechnol 67:45–51

    Article  CAS  Google Scholar 

  • Bae S, Sugano Y, Shoda M (2004) Improvement of bacterial cellulose production by addition of agar in a jar fermentor. J Biosci Bioeng 97:33–38

    Article  CAS  Google Scholar 

  • Barnhart DM, Su SC, Baccaro BE, Banta LM, Farrand SK (2013) CelR, an ortholog of the diguanylate cyclase PleD of caulobacter, regulates Cellulose synthesis in Agrobacterium tumefaciens. Appl Environ Microbiol 79:7188–7202

    Article  CAS  Google Scholar 

  • Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107

    Article  CAS  Google Scholar 

  • Berndt S, Wesarg F, Wiegand C, Kralisch D, Müller F (2013) Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles. Cellulose 20:771–783

    Article  CAS  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohyd Polym 84:975–983

    Article  CAS  Google Scholar 

  • Brown AJ (1886) XLIII.-On an acetic ferment which forms cellulose. J Chem Soc Trans 49:432–439

    Article  CAS  Google Scholar 

  • Cai ZJ, Yang G (2011) Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Mater Lett 65:182–184

    Article  CAS  Google Scholar 

  • Cai ZJ, Yang GA, Kim J (2011) Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Curr Appl Phys 11:247–249

    Article  Google Scholar 

  • Çakar F, Özer I, Aytekin AO, Sahin F (2014) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohyd Polym 106:7–13

    Article  CAS  Google Scholar 

  • Castro C, Zuluaga R, Alvarez C, Putaux JL, Caro G, Rojas OJ, Mondragon I, Ganan P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohyd Polym 89:1033–1037

    Article  CAS  Google Scholar 

  • Cavka A, Guo X, Tang S-J, Winestrand S, Jönsson LJ, Hong F (2013) Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnol Biofuels 6:25

    Article  CAS  Google Scholar 

  • Chaker A, Mutje P, Vilar MR, Boufi S (2014) Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21:4247–4259

    Article  CAS  Google Scholar 

  • Charreau H, Foresti ML, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80

    Article  CAS  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124

    CAS  Google Scholar 

  • Chen SY, Zou Y, Yan ZY, Shen W, Shi SK, Zhang X, Wang HP (2009) Carboxymethylated-bacterial cellulose for copper and lead ion removal. J Hazard Mater 161:1355–1359

    Article  CAS  Google Scholar 

  • Chen HH, Chen LC, Huang HC, Lin SB (2011a) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose 18:1573–1583

    Article  CAS  Google Scholar 

  • Chen Y, Zhang YM, Ke FY, Zhou JH, Wang HP, Liang DH (2011b) Solubility of neutral and charged polymers in ionic liquids studied by laser light scattering. Polymer 52:481–488

    Article  CAS  Google Scholar 

  • Chen H-H, Lin S-B, Hsu C-P, Chen L-C (2013) Modifying bacterial cellulose with gelatin peptides for improved rehydration. Cellulose 20:1967–1977

    Article  CAS  Google Scholar 

  • Chen WS, Abe K, Uetani K, Yu HP, Liu YX, Yano H (2014a) Individual cotton cellulose nanofibers: pretreatment and fibrillation technique. Cellulose 21:1517–1528

    Article  CAS  Google Scholar 

  • Chen Y, Zhou X, Lin Q, Jiang D (2014b) Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose 21:2679–2693

    Article  CAS  Google Scholar 

  • Cheng K-C, Catchmark JM, Demirci A (2009a) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12

    Article  CAS  Google Scholar 

  • Cheng KC, Catchmark JM, Demirci A (2009b) Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16:1033–1045

    Article  CAS  Google Scholar 

  • Cheng KC, Demirci A, Catchmark JM (2010) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87:445–456

    Article  CAS  Google Scholar 

  • Cheng KC, Catchmark JM, Demirci A (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12:730–736

    Article  CAS  Google Scholar 

  • Choi CN, Song HJ, Kim MJ, Chang MH, Kim SJ (2009) Properties of bacterial cellulose produced in a pilot-scale spherical type bubble column bioreactor. Korean J Chem Eng 26:136–140

    Article  CAS  Google Scholar 

  • Ciechanska D, Struszczyk H, Kazimierczak J, Guzinska K, Pawlak M, Kozlowska E, Matusiak G, Dutkiewicz M (2002) New electro-acoustic transducers based on modified bacterial cellulose. Fibres Text East Eur 10:27–30

    CAS  Google Scholar 

  • Çoban EP, Biyik H (2011) Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin-Scharmm) medium and beet molasses medium. Afr J Microbiol Res 5:1037–1045

    Google Scholar 

  • Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411

    Article  CAS  Google Scholar 

  • Dayal MS, Goswami N, Sahai A, Jain V, Mathur G, Mathur A (2013) Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohyd Polym 94:12–16

    Article  CAS  Google Scholar 

  • De Salvi DTB, Barud HS, Pawlicka A, Mattos RI, Raphael E, Messaddeq Y, Ribeiro SJL (2014) Bacterial cellulose/triethanolamine based ion-conducting membranes. Cellulose 21:1975–1985

    Google Scholar 

  • Dellaglio F, Cleenwerck I, Felis GE, Engelbeen K, Janssens D, Marzotto M (2005) Description of Gluconacetobacter swingsii sp nov and Gluconacetobacter rhaeticus sp nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 55:2365–2370

    Article  CAS  Google Scholar 

  • Dissanayake D, Ismail FM (2013) Mathematical modeling of bacterial cellulose production by Acetobacter xylinum using rotating biological fermentor. In: Proceedings 27th European conference on modelling and simulation ECMS 2013. European Council Modelling and Simulation, Nottingham

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. Bioresources 3:1196–1217

    CAS  Google Scholar 

  • Fang L, Catchmark JM (2014) Characterization of water-soluble exopolysaccharides from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 21:3965–3978

    Article  CAS  Google Scholar 

  • Feng YY, Zhang XQ, Shen YT, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohyd Polym 87:644–649

    Article  CAS  Google Scholar 

  • Feng J, Shi Q, Li W, Shu X, Chen A, Xie X, Huang X (2014) Antimicrobial activity of silver nanoparticles in situ growth on TEMPO-mediated oxidized bacterial cellulose. Cellulose 21:4557–4567

    Article  CAS  Google Scholar 

  • Fu LN, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohyd Polym 92:1432–1442

    Article  CAS  Google Scholar 

  • Gao CA, Wan YZ, Yang CX, Dai KR, Tang TT, Luo HL, Wang JH (2011a) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mat 18:139–145

    Article  CAS  Google Scholar 

  • Gao QY, Shen XY, Lu XK (2011b) Regenerated bacterial cellulose fibers prepared by the NMMO center dot H2O process. Carbohyd Polym 83:1253–1256

    Article  CAS  Google Scholar 

  • Gao C, Yan T, Dai K, Wan Y (2012) Immobilization of gelatin onto natural nanofibers for tissue engineering scaffold applications without utilization of any crosslinking agent. Cellulose 19:761–768

    Article  CAS  Google Scholar 

  • Gao C, Yan T, Du J, He F, Luo HL, Wan YZ (2014) Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilising epsilon-polylysine nanocoatings. Food Hydrocoll 36:204–211

    Article  CAS  Google Scholar 

  • Gardner DJ, Oporto GS, Mills R, Samir M (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567

    Article  CAS  Google Scholar 

  • Ge HJ, Du SK, Lin DH, Zhang JN, Xiang JL, Li ZX (2011) Gluconacetobacter hansenii subsp nov., a High-Yield Bacterial Cellulose Producing Strain Induced by High Hydrostatic Pressure. Appl Biochem Biotechnol 165:1519–1531

    Article  CAS  Google Scholar 

  • Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Stromme M (2007) Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48:7623–7631

    Article  CAS  Google Scholar 

  • George J, Siddaramaiah (2012) High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohyd Polym 87:2031–2037

    Article  CAS  Google Scholar 

  • George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Nadanasabapathy S, Siddaramaiah (2014) Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohyd Polym 105:285–292

    Article  CAS  Google Scholar 

  • Gomes FP, Silva N, Trovatti E, Serafim LS, Duarte MF, Silvestre AJD, Neto CP, Freire CSR (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55:205–211

    Article  CAS  Google Scholar 

  • Guo X, Cavka A, Jonsson LJ, Hong F (2013) Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb Cell Fact 12:14

    Article  CAS  Google Scholar 

  • Gutierrez J, Tercjak A, Algar I, Retegi A, Mondragon I (2012) Conductive properties of TiO2/bacterial cellulose hybrid fibres. J Colloid Interface Sci 377:88–93

    Article  CAS  Google Scholar 

  • Gutierrez J, Fernandes SCM, Mondragon I, Tercjak A (2013) Multifunctional hybrid nanopapers based on bacterial cellulose and sol-gel synthesized titanium/vanadium oxide nanoparticles. Cellulose 20:1301–1311

    Article  CAS  Google Scholar 

  • Ha JH, Shehzad O, Khan S, Lee SY, Park JW, Khan T, Park JK (2008) Production of bacterial cellulose by a static cultivation using the waste from beer culture broth. Korean J Chem Eng 25:812–815

    Article  CAS  Google Scholar 

  • Ha JH, Shah N, Ul-Islam M, Khan T, Park JK (2011) Bacterial cellulose production from a single sugar alpha-linked glucuronic acid-based oligosaccharide. Process Biochem 46:1717–1723

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687

    Article  CAS  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345

    Article  CAS  Google Scholar 

  • Hettrich K, Pinnow M, Volkert B, Passauer L, Fischer S (2014) Novel aspects of nanocellulose. Cellulose 21:2479–2488

    Article  CAS  Google Scholar 

  • Hirai A, Tsuji M, Horii F (2002) TEM study of band-like cellulose assemblies produced by Acetobacter xylinum at 4 degrees C. Cellulose 9:105–113

    Article  CAS  Google Scholar 

  • Hong F, Qiu KY (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohyd Polym 72:545–549

    Article  CAS  Google Scholar 

  • Hong F, Guo X, Zhang S, S-f Han, Yang G, Jönsson LJ (2012) Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour Technol 104:503–508

    Article  CAS  Google Scholar 

  • Hu Y, Catchmark JM (2010) Influence of 1-methylcyclopropene (1-MCP) on the production of bacterial cellulose biosynthesized by Acetobacter xylinum under the agitated culture. Lett Appl Microbiol 51:109–113

    CAS  Google Scholar 

  • Hu Y, Catchmark JM (2011) In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater 7:2835–2845

    Article  CAS  Google Scholar 

  • Hu WL, Chen SY, Yang ZH, Liu LT, Wang HP (2011a) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8457

    Article  CAS  Google Scholar 

  • Hu WL, Liu SP, Chen SY, Wang HP (2011b) Preparation and properties of photochromic bacterial cellulose nanofibrous membranes. Cellulose 18:655–661

    Article  CAS  Google Scholar 

  • Hu WL, Chen SY, Yang JX, Li Z, Wang HP (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohyd Polym 101:1043–1060

    Article  CAS  Google Scholar 

  • Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101:6084–6091

    Article  CAS  Google Scholar 

  • Huang Y, Wang TH, Ji MZ, Yang JZ, Zhu CL, Sun DP (2014a) Simple preparation of carbonized bacterial cellulose-Pt composite as a high performance electrocatalyst for direct methanol fuel cells (DMFC). Mater Lett 128:93–96

    Article  CAS  Google Scholar 

  • Huang Y, Zhu CL, Yang JZ, Nie Y, Chen CT, Sun DP (2014b) Recent advances in bacterial cellulose. Cellulose 21:1–30

    Article  Google Scholar 

  • Hungund BS, Gupta S (2010a) Improved production of bacterial cellulose from Gluconacetobacter persimmonis GH-2. J Microbial Biochem Technol 2:127–133

    Article  CAS  Google Scholar 

  • Hungund BS, Gupta SG (2010b) Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World J Microbiol Biotechnol 26:1823–1828

    Article  CAS  Google Scholar 

  • Hungund BS, Gupta S (2010c) Strain improvement of Gluconacetobacter xylinus NCIM 2526 for bacterial cellulose production. Afr J Biotechnol 9:5170–5172

    CAS  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  • Ishida T, Sugano Y, Nakai T, Shoda M (2002) Effects of acetan on production of bacterial cellulose by Acetobacter xylinum. Biosci Biotechnol Biochem 66:1677–1681

    Article  CAS  Google Scholar 

  • Jaramillo R, Tobio W, Escamilla J (2012) Effect of sucrose in the production of cellulose by Gluconacetobacter xylinus in static culture. Rev MVZ Córdoba 17:3004–3013

    Google Scholar 

  • Jaramillo R, Perna O, Revollo AB, Arrieta C, Escamilla E (2013) Effect of different concentrations of fructose on bacterial cellulose production in static culture. Rev Colomb Cienc Anim 5:116–130

    Google Scholar 

  • Jia SR, Ou HY, Chen GB, Choi DB, Cho KA, Okabe M, Cha WS (2004) Cellulose production from Gluconobacter oxydans TQ-B2. Biotechnol Bioprocess Eng 9:166–170

    Article  CAS  Google Scholar 

  • Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106

    Article  CAS  Google Scholar 

  • Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969

    Article  CAS  Google Scholar 

  • Jung JY, Park JK, Chang HN (2005) Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme Microb Technol 37:347–354

    Article  CAS  Google Scholar 

  • Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24:265–271

    Article  CAS  Google Scholar 

  • Jung HI, Jeong JH, Lee OM, Park GT, Kim KK, Park HC, Lee SM, Kim YG, Son HJ (2010) Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp V6 cultured in shake flasks. Bioresour Technol 101:3602–3608

    Article  CAS  Google Scholar 

  • Kadere TT, Miyamoto T, Oniang’o RK, Kutima PM, Njoroge SM (2008) Isolation and identification of the genera Acetobacter and Gluconobacter in coconut toddy (mnazi). Afr J Biotechnol 7:2963–2971

    CAS  Google Scholar 

  • Kawaguchi I, Nakamura K (2007) Make-up tissue paper for removing cosmetics, comprises glycerin impregnated into a tissue paper which consists of pulp fiber, and bacterial cellulose entangled in the pulp interfiber forming a network structure. JP2009077752-A; JP4314292-B2

  • Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol 72:291–296

    Article  CAS  Google Scholar 

  • Khan S, Ul-Islam M, Khattak W, Ullah M, Park J (2015) Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22:565–579

    Article  CAS  Google Scholar 

  • Kim SY, Kim JN, Wee YJ, Park DH, Ryu HW (2006) Production of bacterial cellulose by Gluconacetobacter sp RKY5 isolated from persimmon vinegar. Appl Biochem Biotechnol 131:705–715

    Article  Google Scholar 

  • Kim YJ, Kim JN, Wee YJ, Park DH, Ryu HW (2007) Bacterial cellulose production by Gluconacetobacter sp. RKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol 137:529–537

    Google Scholar 

  • Kim S, Li H, Oh I, Kee C, Kim M (2012) Effect of viscosity-inducing factors on oxygen transfer in production culture of bacterial cellulose. Korean J Chem Eng 29:792–797

    Article  CAS  Google Scholar 

  • Kingkaew J, Kirdponpattara S, Sanchavanakit N, Pavasant P, Phisalaphong M (2014) Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films. Biotechnol Bioprocess Eng 19:534–544

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  • Kojima Y, Tonouchi N, Tsuchida T, Yoshinaga F, Yamada Y (1998) The characterization of acetic acid bacteria efficiently producing bacterial cellulose from sucrose: the proposal of Acetobacter xylinum subsp. nonacetoxidans subsp. nov. Biosci Biotechnol Biochem 62:185–187

    Article  CAS  Google Scholar 

  • Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256

    Article  CAS  Google Scholar 

  • Kouda T, Naritomi T, Yano H, Yoshinaga F (1997a) Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture. J Ferment Bioeng 84:124–127

    Article  CAS  Google Scholar 

  • Kouda T, Yano H, Yoshinaga F (1997b) Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture. J Ferment Bioeng 83:371–376

    Article  CAS  Google Scholar 

  • Kouda T, Naritomi M, Naritomi T, Yano H, Yoshinaga F (2000) Process for continuously preparing bacterial cellulose. Google Patents

  • Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Miśkiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biot 29:189–195

    Article  CAS  Google Scholar 

  • Kumbhar J, Rajwade J, Paknikar K (2015) Fruit peels support higher yield and superior quality bacterial cellulose production. Appl Microbiol Biotechnol 99:6677–6691

    Article  CAS  Google Scholar 

  • Kuo C-H, Lee C-K (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohyd Polym 77:41–46

    Article  CAS  Google Scholar 

  • Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohyd Polym 76:333–335

    Article  CAS  Google Scholar 

  • Lai C, Zhang S, Chen X, Sheng L (2014) Nanocomposite films based on TEMPO-mediated oxidized bacterial cellulose and chitosan. Cellulose 21:2757–2772

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90:735–764

    Article  CAS  Google Scholar 

  • Lee K-Y, Bismarck A (2012) Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid. Cellulose 19:891–900

    Article  CAS  Google Scholar 

  • Lee K-Y, Quero F, Blaker J, Hill CS, Eichhorn S, Bismarck A (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18:595–605

    Article  CAS  Google Scholar 

  • Lee H-J, Chung T-J, Kwon H-J, Kim H-J, Tze W (2012) Fabrication and evaluation of bacterial cellulose-polyaniline composites by interfacial polymerization. Cellulose 19:1251–1258

    Article  CAS  Google Scholar 

  • Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32

    Article  CAS  Google Scholar 

  • Li DS, Liu ZY, Al-Haik M, Tehrani M, Murray F, Tannenbaum R, Garmestani H (2010) Magnetic alignment of cellulose nanowhiskers in an all-cellulose composite. Polym Bull 65:635–642

    Article  CAS  Google Scholar 

  • Li Y, Li GZ, Zou YL, Zhou QJ, Lian XX (2014) Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis. Cellulose 21:301–309

    Article  CAS  Google Scholar 

  • Li Z, Wang L, Chen S, Feng C, Chen S, Yin N, Yang J, Wang H, Xu Y (2015) Facilely green synthesis of silver nanoparticles into bacterial cellulose. Cellulose 22:373–383

    Article  CAS  Google Scholar 

  • Liang HW, Guan QF, Zhu Z, Song LT, Yao HB, Lei X, Yu SH (2012) Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater 4:6

    Article  CAS  Google Scholar 

  • Liimatainen H, Visanko M, Sirvio J, Hormi O, Niinimaki J (2013) Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20:741–749

    Article  CAS  Google Scholar 

  • Lin SB, Hsu CP, Chen LC, Chen HH (2009) Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocolloid 23:2195–2203

    Article  CAS  Google Scholar 

  • Lin SP, Calvar IL, Catchmark JM, Liu JR, Demirci A, Cheng KC (2013a) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219

    Article  CAS  Google Scholar 

  • Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013b) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohyd Polym 94:603–611

    Article  CAS  Google Scholar 

  • Lin SP, Hsieh SC, Chen KI, Demirci A, Cheng KC (2014) Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis. Cellulose 21:835–844

    Article  CAS  Google Scholar 

  • Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2001) Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp nov. J Gen Appl Microbiol 47:119–131

    Article  CAS  Google Scholar 

  • Liu J, Korpinen R, Mikkonen KS, Willfor S, Xu CL (2014) Nanofibrillated cellulose originated from birch sawdust after sequential extractions: a promising polymeric material from waste to films. Cellulose 21:2587–2598

    Article  CAS  Google Scholar 

  • Lopes TD, Riegel-Vidotti IC, Grein A, Tischer CA, Faria-Tischer PCD (2014) Bacterial cellulose and hyaluronic acid hybrid membranes: production and characterization. Int J Biol Macromol 67:401–408

    Article  CAS  Google Scholar 

  • Lu HM, Jiang XL (2014) Structure and properties of bacterial cellulose produced using a trickling bed reactor. Appl Biochem Biotechnol 172:3844–3861

    Article  CAS  Google Scholar 

  • Lu XK, Shen XY (2011) Solubility of bacteria cellulose in zinc chloride aqueous solutions. Carbohyd Polym 86:239–244

    Article  CAS  Google Scholar 

  • Lu ZG, Zhang YY, Chi YJ, Xu N, Yao WY, Sun B (2011) Effects of alcohols on bacterial cellulose production by Acetobacter xylinum 186. World J Microbiol Biotechnol 27:2281–2285

    Article  CAS  Google Scholar 

  • Lu M, Zhang YM, Guan XH, Xu XH, Gao TT (2014) Thermodynamics and kinetics of adsorption for heavy metal ions from aqueous solutions onto surface amino-bacterial cellulose. Trans Nonferrous Met Soc China 24:1912–1917

    Article  CAS  Google Scholar 

  • Luna-Martinez JF, Hernandez-Uresti DB, Reyes-Melo ME, Guerrero-Salazar CA, Gonzalez-Gonzalez VA, Sepulveda-Guzman S (2011) Synthesis and optical characterization of ZnS-sodium carboxymethyl cellulose nanocomposite films. Carbohyd Polym 84:566–570

    Article  CAS  Google Scholar 

  • Luo HL, Zhang J, Xiong GY, Wan YZ (2014) Evolution of morphology of bacterial cellulose scaffolds during early culture. Carbohyd Polym 111:722–728

    Article  CAS  Google Scholar 

  • Ma H, Zhou B, Li HS, Li YQ, Ou SY (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohyd Polym 84:383–389

    Article  CAS  Google Scholar 

  • Ma T, Zhao Q, Ji K, Zeng B, Li G (2014) Homogeneous and porous modified bacterial cellulose achieved by in situ modification with low amounts of carboxymethyl cellulose. Cellulose 21:2637–2646

    Article  CAS  Google Scholar 

  • Marins JA, Soares BG, Fraga M, Muller D, Barra GMO (2014) Self-supported bacterial cellulose polyaniline conducting membrane as electromagnetic interference shielding material: effect of the oxidizing agent. Cellulose 21:1409–1418

    Article  CAS  Google Scholar 

  • Martínez-Sanz M, Vicente A, Gontard N, Lopez-Rubio A, Lagaron J (2015) On the extraction of cellulose nanowhiskers from food by-products and their comparative reinforcing effect on a polyhydroxybutyrate-co-valerate polymer. Cellulose 22:535–551

    Article  CAS  Google Scholar 

  • Matsuoka M, Tsuchida T, Matsushita K, Adachi O, Yoshinaga F (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotech Biochem 60:575–579

    Article  CAS  Google Scholar 

  • Matthysse AG, Marry M, Krall L, Kaye M, Ramey BE, Fuqua C, White AR (2005) The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant-Microbe Interact 18:1002–1010

    Article  CAS  Google Scholar 

  • Meftahi A, Khajavi R, Rashidi A, Sattari M, Yazdanshenas ME, Torabi M (2010) The effects of cotton gauze coating with microbial cellulose. Cellulose 17:199–204

    Article  CAS  Google Scholar 

  • Mehta K, Pfeffer S, Brown RM Jr (2015) Characterization of an acsD disruption mutant provides additional evidence for the hierarchical cell-directed self-assembly of cellulose in Gluconacetobacter xylinus. Cellulose 22:119–137

    Article  CAS  Google Scholar 

  • Merayo N, Fuente E, Mutjé P, Negro C (2014) Uso de NFC a partir de pasta de eucalipto y residuos de maíz para mejorar la resistencia del papel reciclado. Paper presented at the XXVII Congreso Interamericano y Colombiano de Ingeniería Química, Cartagena de Indias

  • Miao CW, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262

    Article  CAS  Google Scholar 

  • Mikkelsen D, Flanagan B, Dykes G, Gidley M (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583

    Article  CAS  Google Scholar 

  • Mohite BV, Patil SV (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G-hansenii NCIM 2529. Carbohyd Polym 106:132–141

    Article  CAS  Google Scholar 

  • Moon S-H, Park J-M, Chun H-Y, Kim S-J (2006) Comparisons of physical properties of bacterial celluloses produced in different culture conditions using saccharified food wastes. Biotechnol Bioprocess Eng 11:26–31

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Moran-Mirabal J (2013) The study of cell wall structure and cellulose–cellulase interactions through fluorescence microscopy. Cellulose 20:2291–2309

    Article  CAS  Google Scholar 

  • Muller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111

    Article  CAS  Google Scholar 

  • Muller D, Mandelli JS, Marins JA, Soares BG, Porto LM, Rambo CR, Barra GMO (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19:1645–1654

    Article  CAS  Google Scholar 

  • Nakai T, Sugano Y, Shoda M, Sakakibara H, Oiwa K, Tuzi S, Imai T, Sugiyama J, Takeuchi M, Yamauchi D (2013) Formation of highly twisted ribbons in a carboxymethylcellulase gene-disrupted strain of a cellulose-producing bacterium. J Bacteriol 195:958–964

    Article  CAS  Google Scholar 

  • Naritomi T, Kouda T, Yano H, Yoshinaga F (1998a) Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85:598–603

    Article  CAS  Google Scholar 

  • Naritomi T, Kouda T, Yano H, Yoshinaga F (1998b) Effect of lactate on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85:89–95

    Article  CAS  Google Scholar 

  • Naritomi T, Kouda T, Yano H, Yoshinaga F, Shigematsu T, Moriumura S, Kida K (2002) Influence of broth exchange ratio on bacterial cellulose production by repeated-batch culture. Process Biochem 38:41–47

    Article  CAS  Google Scholar 

  • Negro C, Merayo N, Seara M, Balea A, Fuente Edl, Blanco A (2015) Effect of NFC added in mass to a recycled pulp on the flocculation process. Paper presented at the 10th European Congress of Chemical Engineering, Nice, France

  • Nguyen VT, Flanagan B, Gidley MJ, Dykes GA (2008) Characterization of Cellulose Production by a Gluconacetobacter xylinus Strain from Kombucha. Curr Microbiol 57:449–453

    Article  CAS  Google Scholar 

  • Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. 2. Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25:2997–3001

    Article  CAS  Google Scholar 

  • Noro N, Sugano Y, Shoda M (2004) Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Appl Microbiol Biotechnol 64:199–205

    Article  CAS  Google Scholar 

  • Oikawa T, Morino T, Ameyama M (1995a) Production of cellulose from D-Arabitol by Acetobacter xylinum KU-1. Biosci Biotechnol Biochem 59:1564–1565

    Article  CAS  Google Scholar 

  • Oikawa T, Ohtori T, Ameyama M (1995b) Production of cellulose from D-mannitol by Acetobacter xylinum KU-1. Biosci Biotechnol Biochem 59:331–332

    Article  CAS  Google Scholar 

  • Oshima T, Kondo K, Ohto K, Inoue K, Baba Y (2008) Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. React Funct Polym 68:376–383

    Article  CAS  Google Scholar 

  • Oshima T, Taguchi S, Ohe K, Baba Y (2011) Phosphorylated bacterial cellulose for adsorption of proteins. Carbohyd Polym 83:953–958

    Article  CAS  Google Scholar 

  • Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  CAS  Google Scholar 

  • Palaninathan V, Chauhan N, Poulose AC, Raveendran S, Mizuki T, Hasumura T, Fukuda T, Morimoto H, Yoshida Y, Maekawa T, Kumar DS (2014) Acetosulfation of bacterial cellulose: an unexplored promising incipient candidate for highly transparent thin film. Mater Express 4:415–421

    Article  CAS  Google Scholar 

  • Park JK, Park YH, Jung JY (2003) Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from rotten apple. Biotechnol Bioprocess Eng 8:83–88

    Article  CAS  Google Scholar 

  • Park YB, Lee CM, Kafle K, Park S, Cosgrove DJ, Kim SH (2014) Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction. Biomacromolecules 15:2718–2724

    Article  CAS  Google Scholar 

  • Pecoraro É, Manzani D, Messaddeq Y, Ribeiro SJL (2007) Chapter 17—bacterial cellulose from Gluconacetobacter xylinus: preparation, properties and applications. In: Gandini MNBA (ed) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 369–383

    Chapter  Google Scholar 

  • Pei AH, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055

    Article  CAS  Google Scholar 

  • Pelissari FM, Sobral PJD, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432

    Article  CAS  Google Scholar 

  • Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206

    Article  CAS  Google Scholar 

  • Pircher N, Veigel S, Aigner N, Nedelec JM, Rosenau T, Liebner F (2014) Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohyd Polym 111:505–513

    Article  CAS  Google Scholar 

  • Qing Y, Sabo R, Zhu JY, Agarwal U, Cai ZY, Wu YQ (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohyd Polym 97:226–234

    Article  CAS  Google Scholar 

  • Raghunathan D (2013) Production of microbial cellulose from the new bacterial strain isolated from temple wash waters. Int J Curr Microbiol App Sci 2:275–290

    Google Scholar 

  • Ramani D, Sastry TP (2014) Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite. Cellulose 21:3585–3595

    Article  CAS  Google Scholar 

  • Reiner RS (2008) Cellulose Nanocrystals: preparation and processing. Paper presented at the international conference on nanotechnology for the Forest Products Industry, St. Louis, Missouri, USA

  • Ren Y, Li SR, Dai B, Huang XH (2014) Microwave absorption properties of cobalt ferrite-modified carbonized bacterial cellulose. Appl Surf Sci 311:1–4

    Article  CAS  Google Scholar 

  • Retegi A, Algar I, Martin L, Altuna F, Stefani P, Zuluaga R, Gañán P, Mondragon I (2012) Sustainable optically transparent composites based on epoxidized soy-bean oil (ESO) matrix and high contents of bacterial cellulose (BC). Cellulose 19:103–109

    Article  CAS  Google Scholar 

  • Robledo M, Rivera L, Jimenez-Zurdo JI, Rivas R, Dazzo F, Velazquez E, Martinez-Molina E, Hirsch AM, Mateos PF (2012) Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb Cell Fact 11:125

    Article  CAS  Google Scholar 

  • Rosa JR, da Silva ISV, de Lima CSM, Neto WPF, Silverio HA, dos Santos DB, Barud HD, Ribeiro SJL, Pasquini D (2014) New biphasic mono-component composite material obtained by partial oxypropylation of bacterial cellulose. Cellulose 21:1361–1368

    CAS  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

    CAS  Google Scholar 

  • Ruka DR, Simon GP, Dean KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohyd Polym 92:1717–1723

    Article  CAS  Google Scholar 

  • Ruka D, Simon G, Dean K (2014) Harvesting fibrils from bacterial cellulose pellicles and subsequent formation of biodegradable poly-3-hydroxybutyrate nanocomposites. Cellulose 21:4299–4308

    Article  CAS  Google Scholar 

  • Santos SM, Carbajo JM, Quintana E, Ibarra D, Gomez N, Ladero M, Eugenio ME, Villar JC (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohyd Polym 116:173–181

    Article  CAS  Google Scholar 

  • Scherner M, Reutter S, Klemm D, Sterner-Kock A, Guschlbauer M, Richter T, Langebartels G, Madershahian N, Wahlers T, Wippermann J (2014) In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J Surg Res 189:340–347

    Article  CAS  Google Scholar 

  • Sehaqui H, de Larraya UP, Liu P, Pfenninger N, Mathew AP, Zimmermann T, Tingaut P (2014) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21:2831–2844

    Article  CAS  Google Scholar 

  • Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756–760

    Article  CAS  Google Scholar 

  • Shafizadeh F, Lai YZ, McIntyre CR (1978) Thermal-degradation of 6-chlorocellulose and cellulose zinc chloride mixture. J Appl Polym Sci 22:1183–1193

    Article  CAS  Google Scholar 

  • Shah N, Ha JH, Park JK (2010) Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol Bioprocess Eng 15:110–118

    Article  CAS  Google Scholar 

  • Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohyd Polym 98:1585–1598

    Article  CAS  Google Scholar 

  • Shen W, Chen SY, Shi SK, Li X, Zhang X, Hu WL, Wang HP (2009) Adsorption of Cu(II) and Pb(II) onto diethylenetriamine-bacterial cellulose. Carbohyd Polym 75:110–114

    Article  CAS  Google Scholar 

  • Shezad O, Khan S, Khan T, Park JK (2009) Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean J Chem Eng 26:1689–1692

    Article  CAS  Google Scholar 

  • Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohyd Polym 82:173–180

    Article  CAS  Google Scholar 

  • Shi ZJ, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocolloid 35:539–545

    Article  CAS  Google Scholar 

  • Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8

    Article  CAS  Google Scholar 

  • Silva N, Rodrigues AF, Almeida IF, Costa PC, Rosado C, Neto CP, Silvestre AJD, Freire CSR (2014) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohyd Polym 106:264–269

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Sokollek SJ, Hertel C, Hammes WP (1998) Cultivation and preservation of vinegar bacteria. J Biotechnol 60:195–206

    Article  CAS  Google Scholar 

  • Son C, Chung S, Lee J, Kim S (2002) Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures. J Microbiol Biotechnol 12:722–728

    Google Scholar 

  • Song HJ, Li HX, Seo JH, Kim MJ, Kim SJ (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26:141–146

    Article  Google Scholar 

  • Soykeabkaew N, Laosat N, Ngaokla A, Yodsuwan N, Tunkasiri T (2012) Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Compos Sci Technol 72:845–852

    Article  CAS  Google Scholar 

  • Spaic M, Small D, Cook J, Wan W (2014) Characterization of anionic and cationic functionalized bacterial cellulose nanofibres for controlled release applications. Cellulose 21:1529–1540

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  CAS  Google Scholar 

  • Sun DP, Zhou LL, Wu QH, Yang SL (2007) Preliminary research on structure and properties of nano-cellulose. J Wuhan Univ Technol Mat Sci Ed 22:677–680

    Article  CAS  Google Scholar 

  • Sun DP, Ma B, Zhu CL, Liu CS, Yang JZ (2010) Novel Nitrocellulose Made from Bacterial Cellulose. J Energ Mater 28:85–97

    Article  CAS  Google Scholar 

  • Surma-Slusarska B, Danielewicz D, Presler S (2008a) Properties of composites of unbeaten birch and pine sulphate pulps with bacterial cellulose. Fibres Text East Eur 16:127–129

    CAS  Google Scholar 

  • Surma-Slusarska B, Presler S, Danielewicz D (2008b) Characteristics of Bacterial Cellulose Obtained from Acetobacter Xylinum Culture for Application in Papermaking. Fibres Text East Eur 16:108–111

    CAS  Google Scholar 

  • Suwanposri A, Yukphan P, Yamada Y, Ochaikul D (2013) Identification and biocellulose production of Gluconacetobacter strains isolated from tropical fruits in Thailand. Maejo Int J Sci Technol 7:70–82

    CAS  Google Scholar 

  • Suzuki S, Hirai A, Horii F (2012a) Formation and structure of the complexes of sub-elementary fibrils of bacterial cellulose with fluorescent brightener molecules. Cellulose 19:1607–1618

    Article  CAS  Google Scholar 

  • Suzuki S, Suzuki F, Kanie Y, Tsujitani K, Hirai A, Kaji H, Horii F (2012b) Structure and crystallization of sub-elementary fibrils of bacterial cellulose isolated by using a fluorescent brightening agent. Cellulose 19:713–727

    Article  CAS  Google Scholar 

  • Thompson DN, Hamilton MA (2001) Production of bacterial cellulose from alternate feedstocks. In: Twenty-second symposium on biotechnology for fuels and chemicals. Springer, Berlin, pp 503–513

  • Tome LC, Freire MG, Rebelo LPN, Silvestre AJD, Neto CP, Marrucho IM, Freire CSR (2011) Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem 13:2464–2470

    Article  CAS  Google Scholar 

  • Tomé L, Fernandes SM, Perez D, Sadocco P, Silvestre AD, Neto C, Marrucho I, Freire CR (2013) The role of nanocellulose fibers, starch and chitosan on multipolysaccharide based films. Cellulose 20:1807–1818

    Article  CAS  Google Scholar 

  • Tomer G, Patel H, Podczeck F, Newton JM (2001) Measuring the water retention capacities (MRC) of different microcrystalline cellulose grades. Eur J Pharm Sci 12:321–325

    Article  CAS  Google Scholar 

  • TORAYCA® T1000G DATA SHEET

  • Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A (2015) Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 16:14832–14849

    Article  CAS  Google Scholar 

  • Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8:1997–2011

    Article  CAS  Google Scholar 

  • Ul-Islam M, Khan T, Khattak W, Park J (2013a) Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20:589–596

    Article  CAS  Google Scholar 

  • Ul-Islam M, Khattak W, Kang M, Kim S, Khan T, Park J (2013b) Effect of post-synthetic processing conditions on structural variations and applications of bacterial cellulose. Cellulose 20:253–263

    Article  CAS  Google Scholar 

  • Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stabil 59:93–99

    Article  CAS  Google Scholar 

  • Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by gluconacetobacter xylinus. J Polym Environ 21:545–554

    Article  CAS  Google Scholar 

  • Vilaseca F, Gonzalez I, Alcala M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutje P (2014) From paper to nanopaper: evolution of mechanical and physical properties. In: Ongoing modification of cellulose nanofibers and their potential appications, Madrid, Spain

  • Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Curr Sci 102:1398–1405

    CAS  Google Scholar 

  • Wang HH, Zhu EW, Yang JZ, Zhou PP, Sun DP, Tang WH (2012) Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J Phys Chem C 116:13013–13019

    Article  CAS  Google Scholar 

  • Wang QQ, Zhu JY, Considine JM (2013) Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream. ACS Appl Mater Interfaces 5:2527–2534

    Article  CAS  Google Scholar 

  • Wei B, Yang GA, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohyd Polym 84:533–538

    Article  CAS  Google Scholar 

  • Wu JM, Liu RH (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohyd Polym 90:116–121

    Article  CAS  Google Scholar 

  • Wu J-M, Liu R-H (2013) Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. J Biosci Bioeng 115:284–290

    Article  CAS  Google Scholar 

  • Wu R-Q, Li Z-X, Yang J-P, Xing X-H, Shao D-Y, Xing K-L (2010) Mutagenesis induced by high hydrostatic pressure treatment: a useful method to improve the bacterial cellulose yield of a Gluconoacetobacter xylinus strain. Cellulose 17:399–405

    Article  CAS  Google Scholar 

  • Wu J, Zheng YD, Wen XX, Lin QH, Chen XH, Wu ZG (2014) Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater 9:12

    Article  CAS  Google Scholar 

  • Yang YK, Park SH, Hwang JW, Pyun YR, Kim YS (1998) Cellulose production by Acetobacter xylinum BRC5 under agitated condition. J Ferment Bioeng 85:312–317

    Article  CAS  Google Scholar 

  • Yang H, Tejado A, Alam N, Antal M, van de Ven TGM (2012) Films Prepared from Electrosterically Stabilized Nanocrystalline Cellulose. Langmuir 28:7834–7842

    Article  CAS  Google Scholar 

  • Yang Y, Jia JJ, Xing JR, Chen JB, Lu SM (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohyd Polym 92:2012–2017

    Article  CAS  Google Scholar 

  • Yang JX, Lv XG, Chen SY, Li Z, Feng C, Wang HP, Xu YM (2014) In situ fabrication of a microporous bacterial cellulose/potato starch composite scaffold with enhanced cell compatibility. Cellulose 21:1823–1835

    Article  CAS  Google Scholar 

  • Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284

    Article  CAS  Google Scholar 

  • Yu SY, Lin KW (2014) Influence of Bacterial Cellulose (nata) on the Physicochemical and Sensory Properties of Frankfurter. J Food Sci 79:C1117–C1122

    Article  CAS  Google Scholar 

  • Zang SS, Sun Z, Liu K, Wang G, Zhang R, Liu BF, Yang G (2014) Ordered manufactured bacterial cellulose as biomaterial of tissue engineering. Mater Lett 128:314–318

    Article  CAS  Google Scholar 

  • Zeng XB, Small DP, Wan WK (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohyd Polym 85:506–513

    Article  CAS  Google Scholar 

  • Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21:4455–4469

    Article  CAS  Google Scholar 

  • Zhang W, Chen SY, Hu WL, Zhou BH, Yang ZH, Yin N, Wang HP (2011) Facile fabrication of flexible magnetic nanohybrid membrane with amphiphobic surface based on bacterial cellulose. Carbohyd Polym 86:1760–1767

    Article  CAS  Google Scholar 

  • Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohyd Polym 79:1086–1093

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the SPANISH MINISTRY OF ECONOMY AND COMPETITIVENESS through the project “NANOSOLPAPELREC” (Ref. CTQ2013-48090-C2-1-R) and the Grant of C. Campano (BES-2014-068177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angeles Blanco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campano, C., Balea, A., Blanco, A. et al. Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23, 57–91 (2016). https://doi.org/10.1007/s10570-015-0802-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0802-0

Keywords

Navigation