Skip to main content
Log in

Fabrication of hydrophobic biocomposite by combining cellulosic fibers with polyhydroxyalkanoate

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Due to increasing environmental concerns related to bio-persistence of petroleum based polymers, and the fact that most biopolymers such as polysaccharides or bio-polyesters are hydrophilic, hydrophobic biodegradable composite consisting of natural cellulosic fiber matrix and bio-derived polyhydroxyalkanoate (PHA) were fabricated by dip-coating, in which PHA was grafted using maleic anhydride to improve its compatibility with cellulosic fibers. It was found that there was a balance between the hydrophobicity of the complex and the grafting degree of MA on PHA. The composite film reached the highest contact angle of 130° at the grafting degree of 0.05% and the ratio of biopolymer to fibers 15%, and it was found to withstand the time aging without loss of hydrophobicity. The tensile strength of the composite film was greatly improved as a result of the introduction of PHA. This hydrophobic composite can potentially be used as a substitute for synthetic polymer/cellulose composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PHA:

Polyhydroxyalkanoate

PHA-g-MA:

Polyhydroxyalkanoate grafted maleic anhydride

PLA:

Polylactic acid

ATRP:

Atom transfer radical polymerization

BPO:

Benzoyl peroxide

MA:

Maleic anhydride

ISO:

International Organization for Standardization

ATR-FTIR:

Attenuated total reflectance fourier transform infrared spectroscopy

SEM:

Scanning electron microscope

CA:

Contact angle

ASTM:

American Society of Testing Materials

TGA:

Thermogravimetric analyzer

CF:

Cotton fiber

References

  • Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368

    Article  CAS  Google Scholar 

  • Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47(2):89–144

    Article  CAS  Google Scholar 

  • Atta AM, Nassar IF, Bedawy HM (2007) Unsaturated polyester resins based on rosin maleic anhydride adduct as corrosion protections of steel. React Funct Polym 67(7):617–626

    Article  CAS  Google Scholar 

  • Avella M, Rota GL, Martuscelli E, Raimo M, Sadocco P, Elegir G, Riva R (2000) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and wheat straw fibre composites: thermal, mechanical properties and biodegradation behaviour. J Mater Sci 35(4):829–836

    Article  CAS  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    Article  CAS  Google Scholar 

  • Carlmark A, Malmstrom EE (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules 4(6):1740–1745

    Article  CAS  Google Scholar 

  • Chen C, Peng S, Fei B, Zhuang Y, Dong L, Feng Z, Chen S, Xia H (2003) Synthesis and characterization of maleated poly(3-hydroxybutyrate). J Appl Polym Sci 88(3):659–668

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution ofcrystalline nanoparticles prepared by acid hydrolysis ofnative cellulose. Biomacromolecules 9:57–65

    Article  CAS  Google Scholar 

  • Farris S, Introzzi L, Biagioni P, Holz T, Schiraldi A, Piergiovanni L (2011) Wetting of biopolymer coatings: contact angle kinetics and image analysis investigation. Langmuir 27(12):7563–7574

    Article  CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink H, Sain M (2012) Biocomposites reinforced with natural fibers: 2000-2010. Prog Polym Sci 37(11):1552–1596

    Article  CAS  Google Scholar 

  • Feng L, Li SH, Li YS, Li HJ, Zhang LJ, Zhai J, Song YL, Liu BQ, Jiang L, Zhu DB (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Garkhail SK, Heijenrath R, Peijs T (2000) Mechanical properties of natural-fibre-mat-reinforced thermoplastics based on flax fibres and polypropylene. Appl Compos Mater 7(5–6):351–372

    Article  CAS  Google Scholar 

  • Hazer DB, Hazer B, Kaymaz F (2009) Synthesis of microbial elastomers based on soybean oily acids. Biocompatibility studies. Biomed Mater 4(3):035011

    Article  Google Scholar 

  • Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M (2005) “Green” composites from recycled cellulose and poly(lactic acid): physico-mechanical and morphological properties evaluation. J Mater Sci 40(16):4221–4229

    Article  CAS  Google Scholar 

  • Hui-Min W, Yi-Ting C, Chin-San W, Jen-Taut Y (2012) Polyester/cellulose acetate composites: preparation, characterization and biocompatible. J Appl Polym Sci 126(S2):E242–E251

    Article  Google Scholar 

  • Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86(1):1–18

    Article  CAS  Google Scholar 

  • Khandal D, Pollet E, Avérous L (2016) Elaboration and behavior of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-nano-biocomposites based on montmorillonite or sepiolite nanoclays. Eur Polym J81:64–76

    Article  Google Scholar 

  • Kim GM, Michler GH (1998) Micromechanical deformation processes in toughened and particle-filled semicrystalline polymers: part 1. Characterization of deformation processes in dependence on phase morphology. Polymer 39(23):5689–5697

    Article  CAS  Google Scholar 

  • Kulkarni SO, Kanekar PP, Jog JP, Patil PA, Nilegaonkar SS, Sarnaik SS, Kshirsagar PR (2011) Characterisation of copolymer, poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) produced by Halomonas campisalis (MCM B-1027), its biodegradability and potential application. Bioresour Technol 102(11):6625–6628

    Article  Google Scholar 

  • Li QX, Matuana LM (2003) Surface of cellulosic materials modified with functionalized polyethylene coupling agents. J Appl Polym Sci 88(2):278–286

    Article  CAS  Google Scholar 

  • Li H, Liu W, Yu D, Song Z (2015) Anchorage of ASA on cellulose fibers in sizing development. Nord Pulp Pap Res J 30(4):626–633

    Article  CAS  Google Scholar 

  • Ma P, Cai X, Lou X, Dong W, Chen M, Lemstra PJ (2014) Styrene-assisted melt free-radical grafting of maleic anhydride onto poly(β-hydroxybutyrate). Polym Degrad Stab 100:93–100

    Article  CAS  Google Scholar 

  • Mauclaire L, Brombacher E, Bünger JD, Zinn M (2010) Factors controlling bacterial attachment and biofilm formation on medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Colloids Surf B 76(1):104–111

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(3–4):1–24

    Article  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10(1–2):19–26

    Article  CAS  Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot Lond 79(6):667–677

    Article  Google Scholar 

  • Owens DK (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  • Parulekar Y, Mohanty AK (2007) Extruded biodegradable cast films from polyhydroxyalkanoate and thermoplastic starch blends: fabrication and characterization. Macromol Mater Eng 292(12):1218–1228

    Article  CAS  Google Scholar 

  • Phithakrotchanakoon C, Champreda V, Aiba S, Pootanakit K, Tanapongpipat S (2015) Production of polyhydroxyalkanoates from crude glycerol using recombinant Escherichia coli. J Polym Environ 23(1):38–44

    Article  CAS  Google Scholar 

  • Reinsch VE, Kelley SS (1997) Crystallization of poly(hydroxybutyrate-co-hydroxyvalerate) in wood fiber-reinforced composites. J Appl Polym Sci 64(9):1785–1796

    Article  CAS  Google Scholar 

  • Ren Q, de Roo G, Ruth K, Witholt B, Zinn M, Thoeny-Meyer L (2009) Simultaneous accumulation and degradation of polyhydroxyalkanoates: Futile cycle or clever regulation? Biomacromolecules 10(4):916–922

    Article  CAS  Google Scholar 

  • Samain X, Langlois V, Renard E, Lorang G (2011) Grafting biodegradable polyesters onto cellulose. J Appl Polym Sci 121(2):1183–1192

    Article  CAS  Google Scholar 

  • Sato A, Kabusaki D, Okumura H, Nakatani T, Nakatsubo F, Yano H (2016) Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement. Compos A 83:72–79

    Article  CAS  Google Scholar 

  • Shanks RA, Hodzic A, Wong S (2004) Thermoplastic biopolyester natural fiber composites. J Appl Polym Sci 91(4):2114–2121

    Article  CAS  Google Scholar 

  • Shen J, Fatehi P, Ni Y (2014) Biopolymers for surface engineering of paper-based products. Cellulose 21(5):3145–3160

    Article  CAS  Google Scholar 

  • Sudesh K, Loo C, Goh L, Iwata T, Maeda M (2007) The oil-absorbing property of polyhydroxyalkanoate films and its practical application: a refreshing new outlook for an old degrading material. Macromol Biosci 7(11):1199–1205

    Article  CAS  Google Scholar 

  • Tserki V, Matzinos P, Panayiotou C (2003) Effect of compatibilization on the performance of biodegradable composites using cotton fiber waste as filler. J Appl Polym Sci 88(7):1825–1835

    Article  CAS  Google Scholar 

  • Urtuvia V, Villegas P, González M, Seeger M (2014) Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int J Biol Macromol 70:208–213

    Article  CAS  Google Scholar 

  • Wang J, Li Y, Wang Z, Li Y, Liu N (2016) Influence of pretreatment on properties of cotton fiber in aqueous NaOH/urea solution. Cellulose 23(3):2173–2183

    Article  CAS  Google Scholar 

  • Wong S, Shanks R, Hodzic A (2002) Properties of poly(3-hydroxybutyric acid) composites with flax fibres modified by plasticiser absorption. Macromol Mater Eng 287(10):647–655

    Article  CAS  Google Scholar 

  • Wong S, Shanks R, Hodzic A (2004) Interfacial improvements in poly(3-hydroxybutyrate)-flax fibre composites with hydrogen bonding additives. Compos Sci Technol 64(9):1321–1330

    Article  CAS  Google Scholar 

  • Wu C (2003) Physical properties and biodegradability of maleated-polycaprolactone/starch composite. Polym Degrad Stab 80(1):127–134

    Article  Google Scholar 

  • Wu C (2009) Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: characterization and biodegradability. Polym Degrad Stab 94(7):1076–1084

    Article  CAS  Google Scholar 

  • Wu C (2013) Preparation, characterization and biodegradability of crosslinked tea plant-fibre-reinforce-d polyhydroxyalkanoate composites. Polym Degrad Stab 98(8):1473–1480

    Article  CAS  Google Scholar 

  • Wu C (2014) Preparation and characterization of polyhydroxyalkanoate bioplastic-based green renewable composites from rice husk. J Polym Environ 22(3):384–392

    Article  CAS  Google Scholar 

  • Wu C, Liao H (2014) The mechanical properties, biocompatibility and biodegradability of chestnut shell fibre and polyhydroxyalkanoate composites. Polym Degrad Stab 99:274–282

    Article  CAS  Google Scholar 

  • Xu S, Zhang F, Jiao C, Chen S, Morikawa H, Chen Y, Lin H (2016) Poly(amidoamine)-mediated self-assembly of hydroxyl-modified anatase TiO2 nanocrystals on cotton fabric. Jpn J Appl Phys 55:06GH0261

    Google Scholar 

  • Xue C, Zhang P, Ma J, Ji P, Li Y, Jia S (2013) Long-lived superhydrophobic colorful surfaces. Chem Commun 49(34):3588–3590

    Article  CAS  Google Scholar 

  • Yan Y, Amer H, Rosenau T, Zollfrank C, Dörrstein J, Jobst C, Zimmermann T, Keckes J, Veigel S, Gindl-Altmutter W et al (2016) Dry, hydrophobic microfibrillated cellulose powder obtained in a simple procedure using alkyl ketene dimer. Cellulose 23(2):1189–1197

    Article  CAS  Google Scholar 

  • Yang Q, Takeuchi M, Saito T, Isogai A (2014) Formation of nanosized islands of dialkyl beta-ketoester bonds for efficient hydrophobization of a cellulose film surface. Langmuir 30(27):8109–8118

    Article  CAS  Google Scholar 

  • Yang S, Madbouly SA, Schrader JA, Grewell D, Kessler MR, Graves WR (2015) Processing and characterization of bio-based poly (hydroxyalkanoate)/poly(amide) blends: improved flexibility and impact resistance of PHA-based plastics. J Appl Polym Sci 132(27):42209

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by State Key Laboratory of Pulp and Paper Engineering (2016C14), the Special Project on the Integration of Industry, Education and Research of Guangdong Province (2013A090100013), the Fundamental Research Funds for the Central Universities (2015ZM174) and Open Funded Projects of Jiangsu Province Key Lab of Pulp and Paper Science and Technology (201519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Li, J., He, B. et al. Fabrication of hydrophobic biocomposite by combining cellulosic fibers with polyhydroxyalkanoate. Cellulose 24, 2265–2274 (2017). https://doi.org/10.1007/s10570-017-1235-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1235-8

Keywords

Navigation