Skip to main content
Log in

Recent developments of cellulose materials for lithium-ion battery separators

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This paper reviews the recent developments of cellulose materials for lithium-ion battery separators. The contents are organized according to the preparation methods such as coating, casting, electrospinning, phase inversion and papermaking. The focus is on the properties of cellulose materials, research approaches, and the outlook of the applications of cellulose materials for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CA:

Cellulose acetate

CAB:

Cellulose acetate butyrate

CC:

Cladophora cellulose

CDA:

Cellulose diacetate

CMC:

Carboxymethyl cellulose

DMF:

N, N-dimethylformide

DMSO:

Dimethyl sulfoxide

GPE:

Gel polymer electrolyte

HEC:

Hydroxyethyl cellulose

HPMC:

Hydroxypropyl methyl cellulose

HNT:

Halloysite nanotube

LIB:

Lithium ion battery

LOI:

Limiting oxygen index

MC:

Methyl cellulose

NCC:

Nanocrystalline cellulose

CNF:

Cellulose nanofibril

MFC:

Microfibrillated cellulose

NIPS:

Non-solvent induced phase separation

TIPS:

Thermally induced phase inversion

NWF:

Nonwoven fabric

PAN:

Polyacrylonitrile

PE:

Polyethylene

PEO:

Poly(ethylene oxide)

PLLA:

Poly-l-lactic acid

PP:

Polypropylene

PPC:

Poly(propylene carbonate)

PMMA:

Poly(methyl methacrylate)

PDA:

Polydopamine

PSA:

Polysulfonamide

PVP:

Polyvinylpyrrolidone

PVDF:

Polyvinylidene fluoride

PVDF-HFP:

Polyvinylidene fluoride-hexafluoropropylene

RTIL:

Room temperature ionic liquid

SBR:

Styrene-butadiene rubber

SNF:

Silica nano-fibers

TEOS:

Tetraethyl orthosilicate

THF:

Tetrahydrofuran

TPU:

Thermoplastic polyurethane

References

  • Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88. doi:10.1016/j.copbio.2016.01.002

    Article  CAS  Google Scholar 

  • Agubra VA, De la Garza D, Gallegos L, Alcoutlabi M (2016a) ForceSpinning of polyacrylonitrile for mass production of lithium-ion battery separators. J Appl Polym Sci 133:n/a–n/a. doi:10.1002/app.42847

    Article  CAS  Google Scholar 

  • Agubra VA, Zuniga L, Flores D, Villareal J, Alcoutlabi M (2016b) Composite nanofibers as advanced materials for Li-ion, Li-O2 and Li-S batteries. Electrochim Acta 192:529–550. doi:10.1016/j.electacta.2016.02.012

    Article  CAS  Google Scholar 

  • Agubra VA, Zuniga L, la Garza DD, Gallegos L, Pokhrel M, Alcoutlabi M (2016c) Forcespinning: a new method for the mass production of Sn/C composite nanofiber anodes for lithium ion batteries. Solid State Ion 286:72–82. doi:10.1016/j.ssi.2015.12.020

    Article  CAS  Google Scholar 

  • Arbizzani C, Colo F, De Giorgio F, Guidotti M, Mastragostino M, Alloin F, Bolloli M, Molmeret Y, Sanchez JY (2014) A non-conventional fluorinated separator in high-voltage graphite/LiNi0.4Mn1.6O4 cells. J Power Sources 246:299–304. doi:10.1016/j.jpowsour.2013.07.095

    Article  CAS  Google Scholar 

  • Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657. doi:10.1038/451652a

    Article  CAS  Google Scholar 

  • Augustyn V, Come J, Lowe MA, Kim JW, Taberna P, Tolbert SH, Abruna HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522. doi:10.1038/NMAT3601

    Article  CAS  Google Scholar 

  • Azizi SM, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626. doi:10.1021/bm0493685

    Article  CAS  Google Scholar 

  • Bai W, Holbery J, Li K (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16:455–465. doi:10.1007/s10570-009-9277-1

    Article  CAS  Google Scholar 

  • Berro S, El Ahdab R, Hassan HH, Khachfe H, Hajj-Hassan M (2015) From plastic to silicone: the novelties in porous polymer fabrications. J Nanomater 16(1):123. doi:10.1155/2015/142195

    Google Scholar 

  • Bolloli M, Antonelli C, Molméret Y, Alloin F, Iojoiu C, Sanchez J (2016) Nanocomposite poly(vynilidene fluoride)/nanocrystalline cellulose porous membranes as separators for lithium-ion batteries. Electrochim Acta 214:38–48. doi:10.1016/j.electacta.2016.08.020

    Article  CAS  Google Scholar 

  • Cao W, Li Y, Fitch B, Shih J, Doung T, Zheng J (2014) Strategies to optimize lithium-ion supercapacitors achieving high-performance: cathode configurations, lithium loadings on anode, and types of separator. J Power Sources 268:841–847. doi:10.1016/j.jpowsour.2014.06.090

    Article  CAS  Google Scholar 

  • Chavan V, Agarwal C, Pandey AK, Nair JP, Surendran P (2014) Controlled development of pores in polyethylene terepthalate sheet by room temperature chemical etching method. J Membr Sci 471:185–191. doi:10.1016/j.memsci.2014.07.077

    Article  CAS  Google Scholar 

  • Chen W, Liu Y, Ma Y, Yang W (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J Power Sources 273:1127–1135. doi:10.1016/j.jpowsour.2014.10.026

    Article  CAS  Google Scholar 

  • Chen W, Shi L, Wang Z, Zhu J, Yang H, Mao X, Chi M, Sun L, Yuan S (2016a) Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery. Carbohydr Polym 147:517–524. doi:10.1016/j.carbpol.2016.04.046

    Article  CAS  Google Scholar 

  • Chen W, Shi L, Zhou H, Zhu J, Wang Z, Mao X, Chi M, Sun L, Yuan S (2016b) Water-based organic-inorganic hybrid coating for a high-performance separator. ACS Sustain Chem Eng 4:3794–3802. doi:10.1021/acssuschemeng.6b00499

    Article  CAS  Google Scholar 

  • Cheng D, Yang X, He Z, Ni Y (2016) Potential of cellulose-based materials for lithium-ion batteries (LIB) separator membranes. J Bioresour Bioprod 1:18–21

    Google Scholar 

  • Chinnam PR, Chatare V, Chereddy S, Mantravadi R, Gau M, Schwab J, Wunder SL (2016) Multi-ionic lithium salts increase lithium ion transference numbers in ionic liquid gel separators. J Mater Chem A 4:14380–14391. doi:10.1039/c6ta05499d

    Article  CAS  Google Scholar 

  • Chun S, Choi E, Lee E, Kim JH, Lee S, Lee S (2012) Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J Mater Chem 22:16618–16626. doi:10.1039/c2jm32415f

    Article  CAS  Google Scholar 

  • Deng Y, Song X, Ma Z, Zhang X, Shu D, Nan J (2016) Al2O3/PVdF-HFP-CMC/PE separator prepared using aqueous slurry and post-hot-pressing method for polymer lithium-ion batteries with enhanced safety. Electrochim Acta 212:416–425. doi:10.1016/j.electacta.2016.07.016

    Article  CAS  Google Scholar 

  • Ding G, Qin B, Liu Z, Zhang J, Zhang B, Hu P, Zhang C, Xu G, Yao J, Cui G (2015) A polyborate coated cellulose composite separator for high performance lithium ion batteries. J Electrochem Soc 162:A834–A838. doi:10.1149/2.0261506jes

    Article  CAS  Google Scholar 

  • Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935. doi:10.1126/science.1212741

    Article  CAS  Google Scholar 

  • Fang M, Ho T, Yen J, Lin Y, Hong J, Wu S, Jow J (2015) Preparation of advanced carbon anode materials from mesocarbon microbeads for use in high C-rate lithium ion batteries. Materials 8:3550–3561. doi:10.3390/ma8063550

    Article  Google Scholar 

  • Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580. doi:10.1016/j.electacta.2006.03.016

    Article  CAS  Google Scholar 

  • Garvey SJ, Anand SC, Rowe T, Horrocks AR, Walker DG (1996) The flammability of hybrid viscose blends. Polym Degrad Stab 54(2–3):413–416

    Article  CAS  Google Scholar 

  • Gopalan AI, Santhosh P, Manesh KM, Jin HN, Sang HK (2008) Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries. J Membr Sci 325:683–690. doi:10.1016/j.memsci.2008.08.047

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w

    Article  CAS  Google Scholar 

  • Hao Q, Xu C, Jia S, Zhao X (2013) Improving the cycling stability of LiCoO2 at 4.5 V through surface modification by Fe2O3 coating. Electrochim Acta 113:439–445. doi:10.1016/j.electacta.2013.09.105

    Article  CAS  Google Scholar 

  • Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui L, Cui Y (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci USA 106:21490–21494. doi:10.1073/pnas.0908858106

    Article  CAS  Google Scholar 

  • Hu L, Wu H, La Mantia F, Yang Y, Cui Y (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano 4:5843–5848. doi:10.1021/nn1018158

    Article  CAS  Google Scholar 

  • Huang X (2011) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15:649–662. doi:10.1007/s10008-010-1264-9

    Article  CAS  Google Scholar 

  • Huang X (2016) A facile approach to make high performance nano-fiber reinforced composite separator for lithium ion batteries. J Power Sources 323:17–22. doi:10.1016/j.jpowsour.2016.05.022

    Article  CAS  Google Scholar 

  • Huang X, Hitt J (2013) Lithium ion battery separators: development and performance characterization of a composite membrane. J Membr Sci 425–426:163–168. doi:10.1016/j.memsci.2012.09.027

    Article  CAS  Google Scholar 

  • Huang F, Xu Y, Peng B, Su Y, Jiang F, Hsieh Y, Wei Q (2015) Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery. ACS Sustain Chem Eng 3:932–940. doi:10.1021/acssuschemeng.5b00032

    Article  CAS  Google Scholar 

  • Huang F, Liu W, Li P, Ning J, Wei Q (2016) Electrochemical properties of LLTO/fluoropolymer-shell cellulose-core fibrous membrane for separator of high performance lithium-ion battery. Materials 9:75. doi:10.3390/ma9020075

    Article  Google Scholar 

  • Ibrahim SM, El Salmawi KM (2013) Preparation and properties of carboxymethyl cellulose (CMC)/sodium alginate (SA) blends induced by gamma irradiation. J Polym Environ 21:520–527. doi:10.1007/s10924-012-0464-z

    Article  CAS  Google Scholar 

  • Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D (2013) Cellulose-based Li-ion batteries: a review. Cellulose 20:1523–1545. doi:10.1007/s10570-013-9973-8

    Article  CAS  Google Scholar 

  • Jeong H, Kim JH, Lee S (2010) A novel poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separator with phase inversion-controlled microporous structure for a lithium-ion battery. J Mater Chem 2:918–9186. doi:10.1039/c0jm01086c

    Google Scholar 

  • Jiang F, Yin L, Yu Q, Zhong C, Zhang J (2015) Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J Power Sources 279:21–27. doi:10.1016/j.jpowsour.2014.12.090

    Article  CAS  Google Scholar 

  • Jiang F, Nie Y, Yin L, Feng Y, Yu Q, Zhong C (2016) Core-shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries. J Membr Sci 510:1–9. doi:10.1016/j.memsci.2016.02.067

    Article  CAS  Google Scholar 

  • Kang W, Ma X, Zhao H, Ju J, Zhao Y, Yan J, Cheng B (2016) Electrospun cellulose acetate/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries. J Solid State Electrochem 20:2791–2803. doi:10.1007/s10008-016-3271-y

    Article  CAS  Google Scholar 

  • Kelley J, Simonsen J, Ding J (2013) Poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposites incorporating cellulose nanocrystals with potential applications in lithium ion batteries. J Appl Polym Sci 127:487–493. doi:10.1002/app.37790

    Article  CAS  Google Scholar 

  • Kim JH, Kim JH, Choi ES, Yu HK, Kim JH (2013) Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J Power Sources 242:533–540. doi:10.1016/j.jpowsour.2013.05.142

    Article  CAS  Google Scholar 

  • Kim JH, Gu M, Lee D, Kim JH, Oh YS (2016) Functionalized nanocellulose-integrated heterolayered nanomats toward smart battery separators. Nano Lett 16:5533–5541. doi:10.1021/acs.nanolett.6b02069

    Article  CAS  Google Scholar 

  • Kumar J, Kichambare P, Rai AK, Bhattacharya R, Rodrigues S (2016) A high performance ceramic-polymer separator for lithium batteries. J Power Sources 301:194–198. doi:10.1016/j.jpowsour.2015.09.117

    Article  CAS  Google Scholar 

  • Kurc B (2014) Gel electrolytes based on poly(acrylonitrile)/sulpholane with hybrid TiO2/SiO2 filler for advanced lithium polymer batteries. Electrochim Acta 125:415–420. doi:10.1016/j.electacta.2014.01.117

    Article  CAS  Google Scholar 

  • Kuribayashi I (1996) Characterization of composite cellulosic separators for rechargeable lithium-ion batteries. J Power Sources 63:87–91. doi:10.1016/S0378-7753(96)02450-0

    Article  CAS  Google Scholar 

  • Lalia BS, Samad YA, Hashaikeh R (2012) Nanocrystalline-cellulose-reinforced poly(vinylidenefluoride-co-hexafluoropropylene) nanocomposite films as a separator for lithium ion batteries. J Appl Polym Sci 1261:E441–E447. doi:10.1002/app.36783

    Google Scholar 

  • Lalia BS, Samad YA, Hashaikeh R (2013) Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermomechanical performance. J Solid State Electrochem 17:575–581. doi:10.1007/s10008-012-1894-1

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. doi:10.1016/j.carbpol.2012.05.026

    Article  CAS  Google Scholar 

  • Lee H, Alcoutlabi M, Watson JV, Zhang X (2013) Polyvinylidene fluoride-co-chlorotrifluoroethylene and polyvinylidene fluoride-co-hexafluoropropylene nanofiber-coated polypropylene microporous battery separator membranes. J Polym Sci Polym Phys 51:349–357. doi:10.1002/polb.23216

    Article  CAS  Google Scholar 

  • Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886. doi:10.1039/c4ee01432d

    Article  CAS  Google Scholar 

  • Leijonmarck S, Cornell A, Lindbergh G, Wagberg L (2013) Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J Mater Chem A 1:4671–4677. doi:10.1039/c3ta01532g

    Article  CAS  Google Scholar 

  • Lewandowski A, Widerska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies. J Power Sources 194:601–609. doi:10.1016/j.jpowsour.2009.06.089

    Article  CAS  Google Scholar 

  • Li H, Chen Y, Ma X, Shi J, Zhu B, Zhu L (2011) Gel polymer electrolytes based on active PVDF separator for lithium ion battery. I: preparation and property of PVDF/poly(dimethylsiloxane) blending membrane. J Membr Sci 379:397–402. doi:10.1016/j.memsci.2011.06.008

    Article  CAS  Google Scholar 

  • Li M, Wang X, Wang Y, Chen B, Wu Y, Holze R (2015a) A gel polymer electrolyte based on composite of nonwoven fabric and methyl cellulose with good performance for lithium ion batteries. RSC Adv 5:52382–52387. doi:10.1039/c5ra07182h

    Article  CAS  Google Scholar 

  • Li MX, Wang XW, Yang YQ, Chang Z, Wu YP (2015b) A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J Membr Sci 476:112–118. doi:10.1016/j.memsci.2014.10.056

    Article  CAS  Google Scholar 

  • Li W, Xing Y, Wu Y, Wang J, Chen L, Yang G, Tang B (2015c) Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on Electrospun PVdF nanofibrous membrane. Electrochim Acta 151:289–296. doi:10.1016/j.electacta.2014.11.083

    Article  CAS  Google Scholar 

  • Liang Z, Zheng G, Liu C, Liu N, Li W, Yan K, Yao H, Hsu P, Chu S, Cui Y (2015) Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett 15:2910–2916. doi:10.1021/nl5046318

    Article  CAS  Google Scholar 

  • Liao H, Hong H, Zhang H, Li Z (2016a) Preparation of hydrophilic polyethylene/methylcellulose blend microporous membranes for separator of lithium-ion batteries. J Membr Sci 498:147–157. doi:10.1016/j1.memsci.2015.09.064

    Article  CAS  Google Scholar 

  • Liao H, Zhang H, Hong H, Li Z, Qin G, Zhu H, Lin Y (2016b) Novel cellulose aerogel coated on polypropylene separators as gel polymer electrolyte with high ionic conductivity for lithium-ion batteries. J Membr Sci 514:332–339. doi:10.1016/j.memsci.2016.05.009

    Article  CAS  Google Scholar 

  • Liu J, Li W, Zuo X, Liu S, Li Z (2013) Polyethylene-supported polyvinylidene fluoride-cellulose acetate butyrate blended polymer electrolyte for lithium ion battery. J Power Sources 226:101–106. doi:10.1016/j.jpowsour.2012.10.078

    Article  CAS  Google Scholar 

  • Liu C, Shao Z, Wang J, Lu C, Wang Z (2016a) Eco-friendly polyvinyl alcohol/cellulose nanofiber-Li+ composite separator for high-performance lithium-ion batteries. RSC Adv 6:97912–97920. doi:10.1039/c6ra18471e

    Article  CAS  Google Scholar 

  • Liu K, Liu M, Cheng J, Dong S, Wang C (2016b) Novel cellulose/polyurethane composite gel polymer electrolyte for high performance lithium batteries. Electrochim Acta 215:261–266. doi:10.1016/j.electacta.2016.08.076

    Article  CAS  Google Scholar 

  • Lu P, Hsieh Y (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336. doi:10.1016/j.carbpol.2010.04.073

    Article  CAS  Google Scholar 

  • Maier J (2013) Thermodynamics of Electrochemical Lithium Storage. Angew Chem Int Ed 52:4998–5026. doi:10.1002/anie.201205569

    Article  CAS  Google Scholar 

  • Mihranyan A (2011) Cellulose from cladophorales green algae: from environmental problem to high-tech composite materials. J Appl Polym Sci 119:2449–2460. doi:10.1002/app.32959

    Article  CAS  Google Scholar 

  • Padron S, Fuentes A, Caruntu D, Lozano K (2013) Experimental study of nanofiber production through forcespinning. J Appl Phys. doi:10.1063/1.4769886

    Google Scholar 

  • Paladini F, Picca RA, Sportelli MC, Cioffi N, Sannino A, Pollini M (2015) Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications. Mater Sci Eng C-Mater 52:1–10. doi:10.1016/j.msec.2015.03.035

    Article  CAS  Google Scholar 

  • Pan R, Cheung O, Wang Z, Tammela P, Huo J, Lindh J, Edström K, Strømme M, Nyholm L (2016) Mesoporous Cladophora cellulose separators for lithium-ion batteries. J Power Sources 321:185–192. doi:10.1016/j.jpowsour.2016.04.115

    Article  CAS  Google Scholar 

  • Prasanth R, Shubha N, Hng HH, Srinivasan M (2014) Effect of poly(ethylene oxide) on ionic conductivity and electrochemical properties of poly(vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. J Power Sources 245:283–291. doi:10.1016/j.jpowsour.2013.05.178

    Article  CAS  Google Scholar 

  • Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci USA 104:13574–13577. doi:10.1073/pnas.0706508104

    Article  CAS  Google Scholar 

  • Qiu L, Shao Z, Wang D, Wang F, Wang W, Wang J (2014) Carboxymethyl cellulose lithium (CMC–Li) as a novel binder and its electrochemical performance in lithium-ion batteries. Cellulose 21:2789–2796. doi:10.1007/s10570-014-0274-7

    Article  CAS  Google Scholar 

  • Raghavan B, Soto H, Lozano K (2013) Fabrication of melt spun polypropylene nanofibers by forcespinning. J Eng Fiber Fabr 8:52–60

    CAS  Google Scholar 

  • Rajabzadeh S, Maruyama T, Ohmukai Y, Sotani T, Matsuyama H (2009) Preparation of PVDF/PMMA blend hollow fiber membrane via thermally induced phase separation (TIPS) method. Sep Purif Technol 66:76–83. doi:10.1016/j.seppur.2008.11.021

    Article  CAS  Google Scholar 

  • Ran Y, Yin Z, Ding Z, Guo H, Yang J (2013) A polymer electrolyte based on poly(vinylidene fluoride-hexafluoropylene)/hydroxypropyl methyl cellulose blending for lithium-ion battery. Ionics 19:757–762. doi:10.1007/s11581-012-0808-7

    Article  CAS  Google Scholar 

  • Seid KA, Badot JC, Dubrunfaut O, Levasseur S, Guyomard D, Lestriez B (2012) Influence of the carboxymethyl cellulose binder on the multiscale electronic transport in carbon-LiFePO4 nanocomposites. J Mater Chem 22:24057–24066. doi:10.1039/c2jm34964g

    Article  CAS  Google Scholar 

  • Seki S, Ohno Y, Miyashiro H, Kobayashi Y, Usami A, Mita Y, Terada N, Hayamizu K, Tsuzuki S, Watanabe M (2008) Quaternary ammonium room-temperature ionic liquid/lithium salt binary electrolytes: electrochemical study. J Electrochem Soc 155:A421. doi:10.1149/1.2899014

    Article  CAS  Google Scholar 

  • Shi C, Zhang P, Chen L, Yang P, Zhao J (2014) Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. J Power Sources 270:547–553. doi:10.1016/j.jpowsour.2014.07.142

    Article  CAS  Google Scholar 

  • Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197. doi:10.1016/S0378-7753(98)00193-1

    Article  CAS  Google Scholar 

  • Sun P, Liao Y, Xie H, Chen T, Rao M, Li W (2014) Poly(methyl methacrylate-acrylonitrile-ethyl acrylate) terpolymer based gel electrolyte for LiNi0.5Mn1.5O4 cathode of high voltage lithium ion battery. J Power Sources 269:299–307. doi:10.1016/j.jpowsour.2014.07.014

    Article  CAS  Google Scholar 

  • Tang Y, Wang X, Li Y, Lei M, Du Y, Kennedy JF, Knill CJ (2010) Production and characterisation of novel injectable chitosan/methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds. Carbohydr Polym 82:833–841. doi:10.1016/j.carbpol.2010.06.003

    Article  CAS  Google Scholar 

  • Ugurlu T, Turkoglu M, Gurer US, Akarsu BG (2007) Colonic delivery of compression coated nisin tablets using pectin/HPMC polymer mixture. Eur J Pharm Biopharm 67:202–210. doi:10.1016/j.ejpb.2007.01.016

    Article  CAS  Google Scholar 

  • Wang X, Liu Z, Zhang C, Kong Q, Yao J, Han P, Jiang W, Xu H, Cui G (2013) Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries. Electrochim Acta 92:132–138. doi:10.1016/j.electacta.2013.01.026

    Article  CAS  Google Scholar 

  • Wang Y, Liu B, Li Q, Cartmell S, Ferrara S, Deng ZD, Xiao J (2015a) Lithium and lithium ion batteries for applications in microelectronic devices: a review. J Power Sources 286:330–345. doi:10.1016/j.jpowsour.2015.03.164

    Article  CAS  Google Scholar 

  • Wang Z, Xu C, Tammela P, Huo J, Stromme M (2015b) Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries. J Mater Chem A 3:14109–14115. doi:10.1039/c5ta02136g

    Article  CAS  Google Scholar 

  • Weng B, Xu F, Alcoutlabi M, Mao Y, Lozano K (2015a) Fibrous cellulose membrane mass produced via forcespinning (R) for lithium-ion battery separators. Cellulose 22:1311–1320. doi:10.1007/s10570-015-0564-8

    Article  CAS  Google Scholar 

  • Weng B, Xu F, Garza G, Alcoutlabi M, Salinas A, Lozano K (2015b) The production of carbon nanotube reinforced poly(vinyl) butyral nanofibers by the forcespinning (R) method. Polym Eng Sci 55:81–87. doi:10.1002/pen.23872

    Article  CAS  Google Scholar 

  • Wongchitphimon S, Wang R, Jiraratananon R, Shi L, Loh CH (2011) Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes. J Membr Sci 369:329–338. doi:10.1016/j.memsci.2010.12.008

    Article  CAS  Google Scholar 

  • Xiao Q, Wang X, Li W, Li Z, Zhang T, Zhang H (2009) Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery. J Membr Sci 334:117–122. doi:10.1016/j.memsci.2009.02.018

    Article  CAS  Google Scholar 

  • Xiao S, Wang F, Yang Y, Chang Z, Wu Y (2014a) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4:76–81. doi:10.1039/c3ra46115g

    Article  CAS  Google Scholar 

  • Xiao SY, Yang YQ, Li MX, Wang FX, Chang Z (2014b) A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries. J Power Sources 270:53–58. doi:10.1016/j.jpowsour.2014.07.058

    Article  CAS  Google Scholar 

  • Xiong M, Tang H, Wang Y, Pan M (2014) Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance. Carbohydr Polym 101:1140–1146. doi:10.1016/j.carbpol.2013.10.073

    Article  CAS  Google Scholar 

  • Xu Q, Kong Q, Liu Z, Wang X, Liu R (2013) Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator. Acs Sustain Chem Eng 512:194–199. doi:10.1021/sc400370h

    Google Scholar 

  • Xu Q, Kong Q, Liu Z, Zhang J, Wang X (2014) Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator. RSC Adv 51:1719–1726. doi:10.1039/c3ra45879b

    Google Scholar 

  • Xu Q, Wei C, Fan L, Peng S, Xu W, Xu J (2017) A bacterial cellulose/Al2O3 nanofibrous composite membrane for a lithium-ion battery separator. Cellulose 24:1889–1899. doi:10.1007/s10570-017-1225-x

    Article  CAS  Google Scholar 

  • Yanilmaz M, Chen C, Zhang X (2013) Fabrication and characterization of SiO2/PVDF composite nanofiber-coated PP nonwoven separators for lithium-ion batteries. J Polym Sci Polym Phys 51:1719–1726. doi:10.1002/polb.23387

    Article  CAS  Google Scholar 

  • Yoneda S, Han W, Hasegawa U, Uyama H (2014) Facile fabrication of poly(methyl methacrylate) monolith via thermally induced phase separation by utilizing unique cosolvency. Polymer 55:3212–3216. doi:10.1016/j.polymer.2014.05.031

    Article  CAS  Google Scholar 

  • Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364. doi:10.1016/j.jpowsour.2006.10.065

    Article  CAS  Google Scholar 

  • Zhang J, Ji Q, Wang F, Tan L, Xia Y (2012a) Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres. Polym Degrad Stab 97:1034–1040. doi:10.1016/j.polymdegradstab.2012.03.004

    Article  CAS  Google Scholar 

  • Zhang LC, Sun X, Hu Z, Yuan CC, Chen CH (2012b) Rice paper as a separator membrane in lithium-ion batteries. J Power Sources 204:149–154. doi:10.1016/j.jpowsour.2011.12.028

    Article  CAS  Google Scholar 

  • Zhang J, Liu Z, Kong Q, Zhang C, Pang S, Yue L, Wang X, Yao J, Cui G (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5:128–134. doi:10.1021/am302290n

    Article  CAS  Google Scholar 

  • Zhang J, Yue L, Kong Q, Liu Z, Zhou X, Zhang C, Xu Q, Zhang B, Ding G, Qin B, Duan Y, Wang Q, Yao J, Cui G, Chen L (2014a) Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep 4:3935. doi:10.1038/srep03935

    Article  CAS  Google Scholar 

  • Zhang Z, Lai Y, Zhang Z, Zhang K, Li J (2014b) Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta 129:55–61. doi:10.1016/j.electacta.2014.02.077

    Article  CAS  Google Scholar 

  • Zhang J, Ma C, Xia Q, Liu J, Ding Z, Xu M, Chen L, Wei W (2016) Composite electrolyte membranes incorporating viscous copolymers with cellulose for high performance lithium-ion batteries. J Membr Sci 497:259–269. doi:10.1016/j.memsci.2015.09.056

    Article  CAS  Google Scholar 

  • Zhao J, Zhang J, Hu P, Ma J, Wang X, Yue L, Xu G, Qin B, Liu Z, Zhou X, Cui G (2016a) A sustainable and rigid-flexible coupling cellulose-supported poly (propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochim Acta 188:23–30. doi:10.1016/j.electacta.2015.11.088

    Article  CAS  Google Scholar 

  • Zhao M, Zuo X, Wang C, Xiao X, Liu J, Nan J (2016b) Preparation and performance of the polyethylene-supported polyvinylidene fluoride/cellulose acetate butyrate/nano-SiO2 particles blended gel polymer electrolyte. Ionics 22:2123–2132. doi:10.1007/s11581-016-1754-6

    Article  CAS  Google Scholar 

  • Zhu YS, Xiao SY, Li MX, Chang Z, Wang FX, Gao J, Wu YP (2015) Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J Power Sources 288:368–375. doi:10.1016/j.jpowsour.2015.04.117

    Article  CAS  Google Scholar 

  • Zhu M, Lan J, Tan C, Sui G, Yang X (2016) Degradable cellulose acetate/poly-L-lactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes. J Mater Chem A 4:12136–12143. doi:10.1039/c6ta05207j

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support afforded by 111 Plan and Guangdong Provincial Science & Technology Plan Projects (No. 2015B020241001); The State Key Laboratory of Pulp and Paper Engineering (No. 2015ZD04); Open Foundation of Zhejiang Provincial Key Lab. for Chem. & Bio. Processing Technology of Farm Products and Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing (No. 2016KF0201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rendang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, J., Tong, S., He, Z. et al. Recent developments of cellulose materials for lithium-ion battery separators. Cellulose 24, 4103–4122 (2017). https://doi.org/10.1007/s10570-017-1421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1421-8

Keywords

Navigation