Skip to main content
Log in

A review of bioreactor technology used for enzymatic hydrolysis of cellulosic materials

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulases are costly, a principal challenge of enzymatic hydrolysis of cellulosic materials for bioethanol production. For an efficient cellulase production, fungi are preferred over bacteria due to their permeation capability and versatile substrate consumption. Some limitations in the enzymatic hydrolysis step prevent the process to be economically feasible. Different strategies have been investigated to overcome these limitations, including genetic engineering, enzyme recycling, high solid loadings, pretreatment technologies, supplementation of cellulases with additives and application of nanomaterials for improving the thermal and pH stability of cellulases. Several studies have been performed in various bioreactors with the target to procure higher yields of glucose in the enzymatic hydrolysis step. The key factors for designing a bioreactor include efficient mixing, sufficient mass transfer, low shear stress, low foaming problems and low consumption of water and energy. In this scenario, different bioreactor configurations, including stirred tank bioreactor, horizontal rotating tubular bioreactor, airlift bioreactor, membrane bioreactor, reciprocating plate bioreactor, solid-state fermentation bioreactors have been reviewed for cellulase production with the aim to investigate main factors for designing a bioreactor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdella A, Mazeed T, El-Baz A et al (2016) Production of β-glucosidase from wheat bran and glycerol by Aspergillus niger in stirred tank and rotating fibrous bed bioreactors. Process Biochem 51(10):1331–1337

    Article  CAS  Google Scholar 

  • Aditiya HB, Mahlia TMI, Chong WT et al (2016) Second generation bioethanol production: a critical review. Renew Sustain Energy Rev 66:631–653. https://doi.org/10.1016/J.RSER.2016.07.015

    Article  CAS  Google Scholar 

  • Ahamed A, Vermette P (2008a) Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem Eng J 40:399–407. https://doi.org/10.1016/J.BEJ.2007.11.030

    Article  CAS  Google Scholar 

  • Ahamed A, Vermette P (2008b) Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem Eng J 42:41–46

    Article  CAS  Google Scholar 

  • Ahamed A, Vermette P (2010) Effect of mechanical agitation on the production of cellulases by Trichoderma reesei RUT-C30 in a draft-tube airlift bioreactor. Biochem Eng J 49:379–387

    Article  CAS  Google Scholar 

  • Alam MZ, Mamun AA, Qudsieh IY et al (2009) Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochem Eng J 46:61–64. https://doi.org/10.1016/J.BEJ.2009.03.010

    Article  CAS  Google Scholar 

  • Alkasrawi M, Eriksson T, Börjesson J et al (2003) The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzyme Microb Technol 33:71–78. https://doi.org/10.1016/S0141-0229(03)00087-5

    Article  CAS  Google Scholar 

  • Al-Zuhair S (2008) The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis. Bioresour Technol 99:4078–4085

    Article  CAS  PubMed  Google Scholar 

  • Al-Zuhair S, Fan YL, Chui KS, Rizwan S (2007) Kinetics of Aspergillus niger cellulase inhibition by reducing sugar produced by the hydrolysis of carboxymethylcellulose. Int J Chem React Eng 5:1

    Google Scholar 

  • Al-Zuhair S, Al-Hosany M, Zooba Y et al (2013) Development of a membrane bioreactor for enzymatic hydrolysis of cellulose. Renew Energy 56:85–89

    Article  CAS  Google Scholar 

  • Amano Y, Nozaki K, Araki T et al (2001) Reactivities of cellulases from fungi towards ribbon-type bacterial cellulose and band-shaped bacterial cellulose. Cellulose 8:267–274

    Article  CAS  Google Scholar 

  • Andrić P, Meyer AS, Jensen PA, Dam-Johansen K (2010a) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors. Biotechnol Adv 28:407–425

    Article  PubMed  CAS  Google Scholar 

  • Andrić P, Meyer AS, Jensen PA, Dam-Johansen K (2010b) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv 28:308–324

    Article  PubMed  CAS  Google Scholar 

  • Ang SK, Shaza EM, Adibah Y et al (2013) Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem 48:1293–1302. https://doi.org/10.1016/j.procbio.2013.06.019

    Article  CAS  Google Scholar 

  • Audet J, Gagnon H, Lounes M, Thibault J (1998) Polysaccharide production: experimental comparison of the performance of four mixing devices. Bioprocess Biosyst Eng 19:45–52

    Article  CAS  Google Scholar 

  • Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573

    Article  CAS  Google Scholar 

  • Bansal P, Hall M, Realff MJ et al (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848

    Article  CAS  PubMed  Google Scholar 

  • Bélafi-Bakó K, Koutinas A, Nemestóthy N et al (2006) Continuous enzymatic cellulose hydrolysis in a tubular membrane bioreactor. Enzyme Microb Technol 38:155–161

    Article  CAS  Google Scholar 

  • Berlin A, Gilkes N, Kurabi A et al (2005) Weak lignin-binding enzymes: a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Appl Biochem Biotechnol 121:0163–0170. https://doi.org/10.1385/ABAB:121:1-3:0163

    Article  Google Scholar 

  • Blakebrough N, Moresi M (1981) Scale-up of whey fermentation in a pilot-scale fermenter. Eur J Appl Microbiol Biotechnol 12:173–178. https://doi.org/10.1007/BF01008339

    Article  Google Scholar 

  • Börjesson J, Peterson R, Tjerneld F (2007) Enhanced enzymatic conversion of softwood lignocellulose by poly (ethylene glycol) addition. Enzyme Microb Technol 40:754–762

    Article  CAS  Google Scholar 

  • Brijwani K, Oberoi HS, Vadlani PV (2010) Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem 45:120–128

    Article  CAS  Google Scholar 

  • Brijwani K, Vadlani PV, Hohn KL, Maier DE (2011) Experimental and theoretical analysis of a novel deep-bed solid-state bioreactor for cellulolytic enzymes production. Biochem Eng J 58:110–123

    Article  CAS  Google Scholar 

  • Bück A, Casciatori FP, Thoméo JC, Tsotsas E (2015) Model-based control of enzyme yield in solid-state fermentation. Proc Eng 102:362–371

    Article  CAS  Google Scholar 

  • Bulakhov AG, Volkov PV, Rozhkova AM et al (2017) Using an inducible promoter of a gene encoding Penicillium verruculosum glucoamylase for production of enzyme preparations with enhanced cellulase performance. PLoS ONE 12:e0170404. https://doi.org/10.1371/journal.pone.0170404

    Article  PubMed  PubMed Central  Google Scholar 

  • Cáceres R, Coromina N, Malińska K, Marfà O (2015) Evolution of process control parameters during extended co-composting of green waste and solid fraction of cattle slurry to obtain growing media. Bioresour Technol 179:398–406

    Article  PubMed  CAS  Google Scholar 

  • Carvajal D, Marchisio DL, Bensaid S, Fino D (2011) Enzymatic hydrolysis of lignocellulosic biomasses via CFD and experiments. Ind Eng Chem Res 51:7518–7525

    Article  CAS  Google Scholar 

  • Caspeta L, Caro-Bermúdez MA, Ponce-Noyola T, Martinez A (2014) Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl Energy 113:277–286

    Article  CAS  Google Scholar 

  • Castro AM, Castilho LR, Freire DMG (2015) Performance of a fixed-bed solid-state fermentation bioreactor with forced aeration for the production of hydrolases by Aspergillus awamori. Biochem Eng J 93:303–308. https://doi.org/10.1016/J.BEJ.2014.10.016

    Article  CAS  Google Scholar 

  • Catapano G, Czermak P, Eibl R et al (2009) Bioreactor design and scale-up. In: Eibl R, Eibl D, Pörtner R, Catapano G, Czermak P (eds) Cell and tissue reaction engineering. Springer, Berlin, pp 173–259

    Chapter  Google Scholar 

  • Chen H-Z, Zhao Z-M, Li H-Q (2014a) The effect of gas double-dynamic on mass distribution in solid-state fermentation. Enzyme Microb Technol 58–59:14–21. https://doi.org/10.1016/J.ENZMICTEC.2014.02.007

    Article  PubMed  Google Scholar 

  • Chen H, Shao M, Li H (2014b) Effects of gas periodic stimulation on key enzyme activity in gas double-dynamic solid state fermentation (GDD-SSF). Enzyme Microb Technol 56:35–39

    Article  CAS  PubMed  Google Scholar 

  • Chen W-C, Lin Y-C, Ciou Y-L et al (2017) Producing bioethanol from pretreated-wood dust by simultaneous saccharification and co-fermentation process. J Taiwan Inst Chem Eng 79:43–48. https://doi.org/10.1016/J.JTICE.2017.04.025

    Article  CAS  Google Scholar 

  • Chisti MY (1989) Bioreactors A. Elsevier Applied Science, London

    Google Scholar 

  • Chisti Y (1998) Pneumatically agitated bioreactors in industrial and environmental bioprocessing: hydrodynamics, hydraulics, and transport phenomena. Appl Mech Rev 51:33–112

    Article  Google Scholar 

  • Chisti Y, Jauregui-Haza UJ (2002) Oxygen transfer and mixing in mechanically agitated airlift bioreactors. Biochem Eng J 10:143–153

    Article  CAS  Google Scholar 

  • Chisti MY, Moo-Young M (1987) Airlift reactors: characteristics, applications and design considerations. Chem Eng Commun 60:195–242

    Article  CAS  Google Scholar 

  • Chisti Y, Moo-Young M (1988) Gas holdup behaviour in fermentation broths and other non-Newtonian fluids in pneumatically agitated reactors. Chem Eng J 39:B31–B36

    Article  CAS  Google Scholar 

  • Choi KH, Chisti Y, Moo-Young M (1995) Influence of the gas–liquid separator design on hydrodynamic and mass transfer performance of split-channel airlift reactors. J Chem Technol Biotechnol 62:327–332

    Article  CAS  Google Scholar 

  • Coffman AM, Li Q, Ju L-K (2014) Effect of natural and pretreated soybean hulls on enzyme production by Trichoderma reesei. J Am Oil Chem Soc 91:1331–1338. https://doi.org/10.1007/s11746-014-2480-8

    Article  CAS  Google Scholar 

  • Corrêa LJ, Badino AC, Cruz AJG (2016) Mixing design for enzymatic hydrolysis of sugarcane bagasse: methodology for selection of impeller configuration. Bioprocess Biosyst Eng 39:285–294

    Article  PubMed  CAS  Google Scholar 

  • Crespo CF, Badshah M, Alvarez MT, Mattiasson B (2012) Ethanol production by continuous fermentation of d-(+)-cellobiose, d-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis. Bioresour Technol 103:186–191

    Article  CAS  PubMed  Google Scholar 

  • Cunha F, Esperança M, Florencio C et al (2015) Three-phasic fermentation systems for enzyme production with sugarcane bagasse in stirred tank bioreactors: effects of operational variables and cultivation method. Biochem Eng J 97:32–39. https://doi.org/10.1016/J.BEJ.2015.02.004

    Article  CAS  Google Scholar 

  • Dasari RK, Dunaway K, Berson RE (2008) A scraped surface bioreactor for enzymatic saccharification of pretreated corn stover slurries. Energy Fuels 23:492–497

    Article  CAS  Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5:578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decker SR, Adney WS, Jennings E et al (2003) Automated filter paper assay for determination of cellulase activity. Appl Biochem Biotechnol 107:689–703

    Article  Google Scholar 

  • Deeble MF, Lee JM (1986) Enzymatic hydrolysis of cellulosic substances in an attrition bioreactor. In: Biotechnology and bioengineering symposium. Wiley, pp 277–293

  • Delabona PS, Pirota RDPB, Codima CA et al (2012) Using Amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes. Biomass Bioenerg 37:243–250. https://doi.org/10.1016/j.biombioe.2011.12.006

    Article  CAS  Google Scholar 

  • Desgranges C, Durand A (1990) Effect of pCO2 on growth, condition, and enzyme production in solid-state culture on Aspergillus niger and Trichoderma viride TS. Enzyme Microb Technol 12:546–551

    Article  CAS  Google Scholar 

  • Dhillon GS, Oberoi HS, Kaur S et al (2011) Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crops Prod 34:1160–1167. https://doi.org/10.1016/J.INDCROP.2011.04.001

    Article  CAS  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S et al (2012) Lactoserum as a moistening medium and crude inducer for fungal cellulase and hemicellulase induction through solid-state fermentation of apple pomace. Biomass Bioenerg 41:165–174. https://doi.org/10.1016/J.BIOMBIOE.2012.02.021

    Article  CAS  Google Scholar 

  • Du J, Zhang F, Li Y et al (2014) Enzymatic liquefaction and saccharification of pretreated corn stover at high-solids concentrations in a horizontal rotating bioreactor. Bioprocess Biosyst Eng 37:173–181

    Article  CAS  PubMed  Google Scholar 

  • Du J, Cao Y, Liu G et al (2017) Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations. Bioresour Technol 229:88–95

    Article  CAS  PubMed  Google Scholar 

  • Duff SJB, Cooper DG, Fuller OM (1985) Cellulase and beta-glucosidase production by mexied culture of Trichoderma reesei rut C30 and Aspergillus phoenicis. Biotechnol Lett 7:185–190

    Article  CAS  Google Scholar 

  • Durand A (1998) Solid state fermentation. Biofuture 181:41–43

    Article  Google Scholar 

  • Durand A (2000) Solid state fermentation. Biofuture 181:41–43

    Google Scholar 

  • Durand A (2003) Bioreactor designs for solid state fermentation. Biochem Eng J 13:113–125

    Article  CAS  Google Scholar 

  • Fakhari ME, Moraveji MK, Davarnejad R (2014) Hydrodynamics and mass transfer of oily micro-emulsions in an external loop airlift reactor. Chin J Chem Eng 22:267–273

    Article  CAS  Google Scholar 

  • Falkoski DL, Guimarães VM, de Almeida MN, Alfenas AC, Colodette JL, de Rezende ST (2013) undefined Chrysoporthe cubensis: a new source of cellulases and hemicellulases to application in biomass saccharification processes. Bioresour Technol 130:296–305

    Article  CAS  PubMed  Google Scholar 

  • Fernández M, Perez-Correa JR, Solar I, Agosin E (1996) Automation of a solid substrate cultivation pilot reactor. Bioprocess Biosyst Eng 16:1–4

    Article  Google Scholar 

  • Flickinger MC, Drew SW (1999) The encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, New York

    Google Scholar 

  • Florencio C, Cunha FM, Badino AC, Farinas CS (2015) Validation of a novel sequential cultivation method for the production of enzymatic cocktails from Trichoderma strains. Appl Biochem Biotechnol 175:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Fujio Y (1997) A study in the application of microbial functions to environmental cleaning and fermented foodstuffs: biotechnological aspects of solid state fermentation. Seibutsu-kogaku Kaishi 75:433–443

    CAS  Google Scholar 

  • Gagnon H, Lounes M, Thibault J (1998) Power consumption and mass transfer in agitated gas–liquid columns: a comparative study. Can J Chem Eng 76:379–389

    Article  CAS  Google Scholar 

  • Gan Q, Allen SJ, Taylor G (2002) Design and operation of an integrated membrane reactor for enzymatic cellulose hydrolysis. Biochem Eng J 12:223–229

    Article  CAS  Google Scholar 

  • Ganesh K, Joshi JB, Sawant SB (2000) Cellulase deactivation in a stirred reactor. Biochem Eng J 4:137–141

    Article  CAS  Google Scholar 

  • Garc’ia-Serna J, Pérez-Barrigón L, Cocero MJ (2007) New trends for design towards sustainability in chemical engineering: green engineering. Chem Eng J 133:7–30

    Article  CAS  Google Scholar 

  • Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    Article  CAS  PubMed  Google Scholar 

  • Gasparotto JM, Werle LB, Foletto EL et al (2015) Production of cellulolytic enzymes and application of crude enzymatic extract for saccharification of lignocellulosic biomass. Appl Biochem Biotechnol 175:560–572

    Article  CAS  PubMed  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  • Ghose TK, Kostick JA (1970) A model for continuous enzymatic saccharification of cellulose with simultaneous removal of glucose syrup. Biotechnol Bioeng 12:921–946

    Article  CAS  Google Scholar 

  • Ghosh UK, Upadhyay SN (2007) Gas holdup and solid-liquid mass transfer in Newtonian and non-Newtonian fluids in bubble columns. Can J Chem Eng 85:825–832

    Article  CAS  Google Scholar 

  • Girometta C, Zeffiro A, Malagodi M et al (2017) Pretreatment of alfalfa stems by wood decay fungus Perenniporia meridionalis improves cellulose degradation and minimizes the use of chemicals. Cellulose 24:3803–3813. https://doi.org/10.1007/s10570-017-1395-6

    Article  CAS  Google Scholar 

  • Gritzali M, Brown RD Jr (1979) The cellulase system of Trichoderma: relationships between purified extracellular enzymes from induced or cellulose-grown cells. ACS Publications, Washington

    Google Scholar 

  • Hahn-Hägerdal B, Andersson E, Lopez-Leiva M, Mattiasson B (1981) Membrane biotechnology, co-immobilization, and aqueous two-phase systems: alternatives in bioconversion of cellulose. In: Biotechnology and bioengineering symposium (United States). University of Lund, Sweden

  • Handelsman J, Rondon MR, Brady SF et al (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  CAS  PubMed  Google Scholar 

  • Hanif A, Yasmeen A, Rajoka MI (2004) Induction, production, repression, and de-repression of exoglucanase synthesis in Aspergillus niger. Bioresour Technol 94:311–319

    Article  CAS  PubMed  Google Scholar 

  • He Q, Chen H (2013) Pilot-scale gas double-dynamic solid-state fermentation for the production of industrial enzymes. Food Bioprocess Technol 6:2916–2924

    Article  CAS  Google Scholar 

  • Helbert W, Chanzy H, Husum TL et al (2003) Fluorescent cellulose microfibrils as substrate for the detection of cellulase activity. Biomacromol 4:481–487

    Article  CAS  Google Scholar 

  • Henley R-G, Yang RYK, Greenfield PF (1980) Enzymatic saccharification of cellulose in membrane reactors. Enzyme Microb Technol 2:206–208

    Article  CAS  Google Scholar 

  • Hideno A, Ogbonna JC, Aoyagi H, Tanaka H (2007) Acetylation of loofa (Luffa cylindrica) sponge as immobilization carrier for bioprocesses involving cellulase. J Biosci Bioeng 103:311–317

    Article  CAS  PubMed  Google Scholar 

  • Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Heitmann JA Jr, Rojas OJ (2009) Quantification of cellulase activity using the quartz crystal microbalance technique. Anal Chem 81:1872–1880

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim M (2002) Preparation of cellulose and cellulose derivative azo compounds. Cellulose 9:337–349

    Article  CAS  Google Scholar 

  • Irshad MN, Anwar Z, But HI et al (2012) The industrial applicability of purified cellulase complex indigenously produced by Trichoderma viride through solid-state bio-processing of agro-industrial and municipal paper wastes. BioResources 8:145–157

    Article  Google Scholar 

  • Jagadeeswaran G, Gainey L, Prade R, Mort AJ (2016) A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan. Appl Microbiol Biotechnol 100:4535–4547. https://doi.org/10.1007/s00253-016-7505-9

    Article  CAS  PubMed  Google Scholar 

  • Jeoh T, Cardona MJ, Karuna N et al (2017) Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review. Biotechnol Bioeng 114:1369–1385. https://doi.org/10.1002/bit.26277

    Article  CAS  PubMed  Google Scholar 

  • Jones EO, Lee JM (1988) Kinetic analysis of bioconversion of cellulose in attrition bioreactor. Biotechnol Bioeng 31:35–40

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96:862–870

    Article  PubMed  CAS  Google Scholar 

  • Juhász T, Kozma K, Szengyel Z, Réczey K (2003) Production of β-glucosidase in mixed culture of Aspergillus niger BKMF 1305 and Trichoderma reesei RUT C30. Food Technol Biotechnol 41:49–53

    Google Scholar 

  • Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev 33:188–203. https://doi.org/10.1016/J.RSER.2014.01.077

    Article  CAS  Google Scholar 

  • Kaar WE, Holtzapple MT (1998) Benefits from Tween during enzymic hydrolysis of corn stover. Biotechnol Bioeng 59:419–427. https://doi.org/10.1002/(SICI)1097-0290(19980820)59:4%3c419:AID-BIT4%3e3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  • Karnaouri A, Topakas E, Antonopoulou I, Christakopoulos P (2014) Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00281

    Article  PubMed  PubMed Central  Google Scholar 

  • Katz M, Reese ET (1968) Production of glucose by enzymatic hydrolysis of cellulose. Appl Microbiol 16:419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya F, Heitmann JA, Joyce TW (1996) Deactivation of cellulase and hemicellulase in high shear fields. Cellul Chem Technol 30:49–56

    CAS  Google Scholar 

  • Khelil O, Cheba B (2014) Thermophilic cellulolytic microorganisms from western Algerian sources: promising isolates for cellulosic biomass recycling. Proc Technol 12:519–528

    Article  Google Scholar 

  • Kim MH, Lee SB, Ryu DDY, Reese ET (1982) Surface deactivation of cellulase and its prevention. Enzyme Microb Technol 4:99–103

    Article  CAS  Google Scholar 

  • King BC, Donnelly MK, Bergstrom GC et al (2009) An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnol Bioeng 102:1033–1044

    Article  CAS  PubMed  Google Scholar 

  • Kogo T, Yoshida Y, Koganei K et al (2017) Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresour Technol 233:67–73. https://doi.org/10.1016/J.BIORTECH.2017.01.075

    Article  CAS  PubMed  Google Scholar 

  • Kolasa M, Ahring BK, Lübeck PS, Lübeck M (2014) Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production. Bioresour Technol 169:143–148. https://doi.org/10.1016/J.BIORTECH.2014.06.082

    Article  CAS  PubMed  Google Scholar 

  • Koutinas A, Belafi-Bako K, Kabiri-Badr A et al (2001) Enzymatic hydrolysis of polysaccharides: hydrolysis of starch by an enzyme complex from fermentation by Aspergillus awamori. Food Bioprod Process 79:41–45

    Article  CAS  Google Scholar 

  • Lan T-Q, Wei D, Yang S-T, Liu X (2013) Enhanced cellulase production by Trichoderma viride in a rotating fibrous bed bioreactor. Bioresour Technol 133:175–182. https://doi.org/10.1016/j.biortech.2013.01.088

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim H (1993) Optimal operating policy of the ultrafiltration membrane bioreactor for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 42:737–746

    Article  CAS  PubMed  Google Scholar 

  • Leghlimi H, Meraihi Z, Boukhalfa-Lezzar H et al (2013) Production and characterization of cellulolytic activities produced by Trichoderma longibrachiatum (GHL). Afr J Biotechnol 12:465–475

    Article  Google Scholar 

  • Lejeune R, Baron GV (1995) Effect of agitation on growth and enzyme production of Trichoderma reesei in batch fermentation. Appl Microbiol Biotechnol 43:249–258

    Article  CAS  Google Scholar 

  • Lever M, Ho G, Cord-Ruwisch R (2010) Ethanol from lignocellulose using crude unprocessed cellulase from solid-state fermentation. Bioresour Technol 101:7083–7087

    Article  CAS  Google Scholar 

  • Libardi N, Soccol CR, Góes-Neto A et al (2017) Domestic wastewater as substrate for cellulase production by Trichoderma harzianum. Process Biochem 57:190–199. https://doi.org/10.1016/J.PROCBIO.2017.03.006

    Article  CAS  Google Scholar 

  • Liming X, Xueliang S (2004) High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour Technol 91:259–262

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Lu J, Cui Z (2011) Enzymatic hydrolysis of cellulose in a membrane bioreactor: assessment of operating conditions. Bioprocess Biosyst Eng 34:525–532

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Zhang L, Qin Y et al (2013a) Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci Rep 3:1569

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu G, Zhang L, Wei X et al (2013b) Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS ONE 8:e55185. https://doi.org/10.1371/journal.pone.0055185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z-H, Qin L, Zhu J-Q et al (2014) Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol Biofuels 7:167

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lounes M, Audet J, Thibault J, LeDuy A (1995) Description and evaluation of reciprocating plate bioreactors. Bioprocess Biosyst Eng 13:1–11

    Article  CAS  Google Scholar 

  • Luo H-P, Al-Dahhan MH (2008) Macro-mixing in a draft-tube airlift bioreactor. Chem Eng Sci 63:1572–1585

    Article  CAS  Google Scholar 

  • Ma L, Zhang J, Zou G et al (2011) Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enzyme Microb Technol 49(4):366–371

    Article  CAS  PubMed  Google Scholar 

  • Madamwar D, Patel S, Parikh H (1989) Solid state fermentation for cellulases and β-glucosidase production by Aspergillus niger. J Ferment Bioeng 67:424–426

    Article  CAS  Google Scholar 

  • Maheshwari DK, Gohade S, Paul J, Varma A (1994) Paper mill sludge as a potential source for cellulase production by Trichoderma reesei QM 9123 and Aspergillus niger using mixed cultivation. Carbohydr Polym 23:161–163

    Article  CAS  Google Scholar 

  • Mameri N, Hamdache F, Abdi N et al (2000) Enzymatic saccharification of olive mill solid residue in a membrane reactor. J Membr Sci 178(1–2):121–130

    Article  CAS  Google Scholar 

  • Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73:269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816

    Article  CAS  PubMed  Google Scholar 

  • Maras M, van Die I, Contreras R, van den Hondel CA (1999) Filamentous fungi as production organisms for glycoproteins of bio-medical interest. In: Berger EG, Clausen H, Cummings RD (eds) Glycotechnology. Springer, Boston, pp 19–27

    Chapter  Google Scholar 

  • Mart’inez AMM, Silva EME (2013) Airlift bioreactors: hydrodynamics and rheology application to secondary metabolites production. In: Nakajima H (ed) Mass transfer—advances in sustainable energy and environment oriented numerical modeling. Rijeka, InTech

    Google Scholar 

  • Membrillo I, Sánchez C, Meneses M et al (2011) Particle geometry affects differentially substrate composition and enzyme profiles by Pleurotus ostreatus growing on sugar cane bagasse. Bioresour Technol 102:1581–1586

    Article  CAS  PubMed  Google Scholar 

  • Mohagheghi A, Grohmann K, Wyman CE (1988) Production of cellulase on mixtures of xylose and cellulose. Appl Biochem Biotechnol 17:263–277

    Article  CAS  Google Scholar 

  • Mooney CA, Mansfield SD, Touhy MG, Saddler JN (1998) The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresour Technol 64:113–119. https://doi.org/10.1016/S0960-8524(97)00181-8

    Article  CAS  Google Scholar 

  • Mukataka S, Tada M, Takahashi J (1983) Effects of agitation on enzymatic hydrolysis of cellulose in a stirred-tank reactor. J Ferment Technol 61:615–621

    CAS  Google Scholar 

  • Mukhopadhyay A, Dasgupta AK, Chattopadhyay D, Chakrabarti K (2012) Improvement of thermostability and activity of pectate lyase in the presence of hydroxyapatite nanoparticles. Bioresour Technol 116:348–354

    Article  CAS  PubMed  Google Scholar 

  • Mussatto SI, van Loosdrecht M (2016) Cellulose: a key polymer for a greener, healthier, and bio-based future. Biofuel Res J 3:482

    Article  Google Scholar 

  • Muthuvelayudham R, Viruthagiri T (2006) Fermentative production and kinetics of cellulase protein on Trichoderma reesei using sugarcane bagasse and rice straw. Afr J Biotechnol 5:1873–1881

    CAS  Google Scholar 

  • Neilson MJ, Kelsey RG, Shafizadeh F (1982) Enhancement of enzymatic hydrolysis by simultaneous attrition of cellulosic substrates. Biotechnol Bioeng 24:293–304

    Article  CAS  PubMed  Google Scholar 

  • Nicolella C, Van Loosdrecht MCM, Heijnen JJ (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80:1–33

    Article  CAS  PubMed  Google Scholar 

  • Nienow AW (1998) Hydrodynamics of stirred bioreactors. Appl Mech Rev 51:3–32

    Article  Google Scholar 

  • Nieves DC, Ruiz HA, de Cárdenas LZ et al (2016) Enzymatic hydrolysis of chemically pretreated mango stem bark residues at high solid loading. Ind Crops Prod 83:500–508

    Article  CAS  Google Scholar 

  • Nigam P, Prabhu KA (1987) A note on utilization of bagasse for the production of proteinaceous cattle feed. Biol Wastes 19:275–280

    Article  Google Scholar 

  • Nigam P, Singh D (1994) Solid-state (substrate) fermentation systems and their applications in biotechnology. J Basic Microbiol 34:405–423

    Article  CAS  Google Scholar 

  • Niranjane AP, Madhou P, Stevenson TW (2007) The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantea. Enzyme Microb Technol 40(6):1464–1468

    Article  CAS  Google Scholar 

  • Noble RD, Giubileo G, Violante V, Fabiani C (1990) Analysis of enzyme catalysis under batch conditions. Chem Eng J 44:B47–B50

    Article  CAS  Google Scholar 

  • Obeng EM, Adam SNN, Budiman C et al (2017) Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess 4:16. https://doi.org/10.1186/s40643-017-0146-8

    Article  Google Scholar 

  • Öhgren K, Bura R, Lesnicki G et al (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42:834–839

    Article  CAS  Google Scholar 

  • Ohlson I, Trägårdh G, Hahn-Hägerdal B (1984) Enzymatic hydrolysis of sodium-hydroxide-pretreated sallow in an ultrafiltration membrane reactor. Biotechnol Bioeng 26:647–653

    Article  CAS  PubMed  Google Scholar 

  • Pandey A (1991) Aspects of fermenter design for solid-state fermentations. Process Biochem 26:355–361

    Article  CAS  Google Scholar 

  • Pandey A (1992) Recent process developments in solid-state fermentation. Process Biochem 27:109–117

    Article  CAS  Google Scholar 

  • Pandey A (1994) Solid state fermentation—an overview. Wiley Eastern Publication, New Delhi, pp 3–10

    Google Scholar 

  • Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR (2000) Economic utilization of crop residues for value addition: A futuristic approach. J Sci Ind Res 59(1):12–22

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I—bioprocesses and products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  • Patel N, Thibault J (2009) Enhanced in situ dynamic method for measuring KLa in fermentation media. Biochem Eng J 47:48–54

    Article  CAS  Google Scholar 

  • Patel N, Choy V, Malouf P, Thibault J (2009) Growth of Trichoderma reesei RUT C-30 in stirred tank and reciprocating plate bioreactors. Process Biochem 44:1164–1171

    Article  CAS  Google Scholar 

  • Peciulyte A, Anasontzis GE, Karlström K, Larsson PT, Olsson L (2014) Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genet Biol 72:64–72

    Article  CAS  PubMed  Google Scholar 

  • Perez JF, Sandall OC (1974) Gas absorption by non-Newtonian fluids in agitated vessels. AIChE J 20:770–775

    Article  CAS  Google Scholar 

  • Petersen EE, Margaritis A (2001) Hydrodynamic and mass transfer characteristics of three-phase gaslift bioreactor systems. Crit Rev Biotechnol 21:233–294

    Article  CAS  PubMed  Google Scholar 

  • Pino MS, Rodr’iguez-Jasso RM, Michelin M et al (2018) Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chem Eng J 347:119–136

    Article  CAS  Google Scholar 

  • Prakash A, Margaritis A, Li H, Bergougnou MA (2001) Hydrodynamics and local heat transfer measurements in a bubble column with suspension of yeast. Biochem Eng J 9:155–163

    Article  CAS  Google Scholar 

  • Prévot V, Lopez M, Copinet E, Duchiron F (2013) Comparative performance of commercial and laboratory enzymatic complexes from submerged or solid-state fermentation in lignocellulosic biomass hydrolysis. Bioresour Technol 129:690–693

    Article  PubMed  CAS  Google Scholar 

  • Rashid MH, Rajoka MI, Siddiqui KS, Shakoori AR (1997) Kinetic properties of chemically modified β-glucosidase from Aspergillus niger 280. Pak J Zool 29:354–363

    Google Scholar 

  • Ray RC, Behera SS (2017) Solid state fermentation for production of microbial cellulases. In: Fogarty WM, Kelly CT (eds) Biotechnology of microbial enzymes. Springer, Berlin, pp 43–79

    Chapter  Google Scholar 

  • Ray R, Swain MR (2011) Bio-ethanol, bioplastics and other fermented industrial products from cassava starch and flour. Nova, Hauppauge, pp 1–32

    Google Scholar 

  • Reese ET, Ryu DY (1980) Shear inactivation of cellulase of Trichoderma reesei. Enzyme Microb Technol 2:239–240

    Article  CAS  Google Scholar 

  • Reuss M, Schmalzriedt S, Jenne M (2000) Application of computational fluiddynamics (CFD) to modeling stirred tank bioreactors. In: Schügerl K, Bellgardt KH (eds) Bioreaction engineering. Springer, Berlin, pp 207–246

    Chapter  Google Scholar 

  • Ritter CET, Fontana RC, Camassola M et al (2013) The influence of sorbitol on the production of cellulases and xylanases in an airlift bioreactor. Bioresour Technol 148:86–90

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AC, Haven MØ, Lindedam J et al (2015) Celluclast and Cellic®CTec2: saccharification/fermentation of wheat straw, solid–liquid partition and potential of enzyme recycling by alkaline washing. Enzyme Microb Technol 79:70–77

    Article  PubMed  CAS  Google Scholar 

  • Rosen MA (2018) Environmental sustainability tools in the biofuel industry. Biofuel Res J 5:751–752

    Article  Google Scholar 

  • Roussos S, Raimbault M, Prebois J-P, Lonsane BK (1993) Zymotis, a large scale solid state fermenter design and evaluation. Appl Biochem Biotechnol 42:37–52

    Article  CAS  Google Scholar 

  • Sachse H, Kude J, Kerns G, Berger R (1990) Production of cellulase in a rotating disc fermenter using immobilized Trichoderma reesei cells. Eng Life Sci 10:523–529

    CAS  Google Scholar 

  • Saini R, Saini JK, Adsul M et al (2015) Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresour Technol 188:240–246. https://doi.org/10.1016/J.BIORTECH.2015.01.048

    Article  CAS  PubMed  Google Scholar 

  • Saini JK, Patel AK, Adsul M, Singhania RR (2016) Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Renew Energy 98:29–42

    Article  CAS  Google Scholar 

  • Sangsurasak P, Mitchell DA (1998) Validation of a model describing two-dimensional heat transfer during solid-state fermentation in packed bed bioreactors. Biotechnol Bioeng 60:739–749

    Article  CAS  PubMed  Google Scholar 

  • Saucedo-Castañeda G, Gutiérrez-Rojas M, Bacquet G et al (1990) Heat transfer simulation in solid substrate fermentation. Biotechnol Bioeng 35:802–808

    Article  PubMed  Google Scholar 

  • Schmidt CG, Furlong EB (2012) Effect of particle size and ammonium sulfate concentration on rice bran fermentation with the fungus Rhizopus oryzae. Bioresour Technol 123:36–41

    Article  CAS  PubMed  Google Scholar 

  • Shah M, Kiss AA, Zondervan E et al (2012) Gas holdup, axial dispersion, and mass transfer studies in bubble columns. Ind Eng Chem Res 51:14268–14278

    Article  CAS  Google Scholar 

  • Shamala TR, Sreekantiah KR (1986) Production of cellulases and d-xylanase by some selected fungal isolates. Enzyme Microb Technol 8:178–182

    Article  CAS  Google Scholar 

  • Sharma S, Kuila A, Sharma V (2017) Enzymatic hydrolysis of thermochemically pretreated biomass using a mixture of cellulolytic enzymes produced from different fungal sources. Clean Technol Environ Policy 19:1577–1584. https://doi.org/10.1007/s10098-017-1346-9

    Article  CAS  Google Scholar 

  • Shokrkar H, Ebrahimi S (2018a) Synergism of cellulases and amylolytic enzymes in the hydrolysis of microalgal carbohydrates. Biofuel Bioprod Biorefin. https://doi.org/10.1002/bbb.1886

    Article  Google Scholar 

  • Shokrkar H, Ebrahimi S (2018b) Evaluation of different enzymatic treatment procedures on sugar extraction from microalgal biomass, experimental and kinetic study. Energy 148:258–268

    Article  CAS  Google Scholar 

  • Shokrkar H, Salahi A, Kasiri N, Mohammadi T (2011) Mullite ceramic membranes for industrial oily wastewater treatment: experimental and neural network modeling. Water Sci Technol 64:670–676

    Article  CAS  PubMed  Google Scholar 

  • Shokrkar H, Salahi A, Kasiri N, Mohammadi T (2012) Prediction of permeation flux decline during MF of oily wastewater using genetic programming. Chem Eng Res Des 90:846–853. https://doi.org/10.1016/j.cherd.2011.10.002

    Article  CAS  Google Scholar 

  • Shokrkar H, Kasiri N, Mohammadi T (2013) Effects of various operation conditions on the polarization layer with ceramic membranes. IJChE 12:18–25

    Google Scholar 

  • Shokrkar H, Kasiri N, Mohammadi T (2015) Modeling of microfiltration membrane for oily wastewater treatment using Hermia model and neural network. IJChE 13:4–12

    Google Scholar 

  • Shokrkar H, Ebrahimi S, Zamani M (2017a) Extraction of sugars from mixed microalgae culture using enzymatic hydrolysis: experimental study and modeling. Chem Eng Commun 204:1246–1257

    Article  CAS  Google Scholar 

  • Shokrkar H, Ebrahimi S, Zamani M (2017b) Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel 200:380–386. https://doi.org/10.1016/j.fuel.2017.03.090

    Article  CAS  Google Scholar 

  • Shokrkar H, Ebrahimi S, Zamani M (2018a) Enzymatic hydrolysis of microalgal cellulose for bioethanol production, modeling and sensitivity analysis. Fuel 228:30–38

    Article  CAS  Google Scholar 

  • Shokrkar H, Abbasabadi M, Ebrahimi S (2018b) Model-based evaluation of continuous bioethanol production plant. Biofuel Bioprod Biorefin

  • Silva COG, Ferreira Filho EX (2017) A review of holocellulase production using pretreated lignocellulosic substrates. BioEnergy Res 10:592–602

    Article  CAS  Google Scholar 

  • Singh AB, Abidi AB, Darmwal NS, Agrawal AK (1989) Evaluation of chemical for biodegradation of agricultural lignocellulosic wastes by A. niger. MIRCEN J Appl Microbiol Biotechnol 5:451–456

    Article  CAS  Google Scholar 

  • Singh R, Kumar R, Bishnoi K et al (2009) Optimization of synergistic parameters for thermostable cellulase activity of Aspergillus heteromorphus using response surface methodology. Biochem Eng J 48(1):28–35

    Article  CAS  Google Scholar 

  • Singh A, Nizami A, Korres N et al (2011) The effect of reactor design on the sustainability of grass biomethane. Renew Sustain Energy Rev 15:1567–1574

    Article  CAS  Google Scholar 

  • Singh A, Patel A, Adsul M et al (2017) Genetic modification: a tool for enhancing cellulase secretion. Biofuel Res J 4:600–610

    Article  CAS  Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK et al (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46:541–549

    Article  CAS  Google Scholar 

  • Srivastava N, Rawat R, Sharma R et al (2014) Effect of nickel–cobaltite nanoparticles on production and thermostability of cellulases from newly isolated thermotolerant Aspergillus fumigatus NS (Class: Eurotiomycetes). Appl Biochem Biotechnol 174:1092–1103. https://doi.org/10.1007/s12010-014-0940-0

    Article  CAS  PubMed  Google Scholar 

  • Srivastava N, Singh J, Ramteke P et al (2015) Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/Alginate nanocomposite. Bioresour Technol 183:262–266

    Article  CAS  PubMed  Google Scholar 

  • Srivastava N, Srivastava M, Mishra PK, Gupta VK, Molina G, Rodriguez-Couto S, Manikanta A, Ramteke PW (2017) Applications of fungal cellulases in biofuel production: advances and limitations. Renew Sustain Energy Rev 82:2379–2386

    Article  CAS  Google Scholar 

  • Stockton BC, Mitchell DJ, Grohmann K, Himmel ME (1991) Optimum β-d-glucosidase supplementation of cellulase for efficient conversion of cellulose to glucose. Biotechnol Lett 13:57–62

    Article  CAS  Google Scholar 

  • Sueb MSM, Luo J, Meyer AS et al (2017) Impact of the fouling mechanism on enzymatic depolymerization of xylan in different configurations of membrane reactors. Sep Purif Technol 178:154–162

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Ge X, Hao Z, Peng M (2010) Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. Afr J Biotechnol 9:163–166

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2:707–738

    CAS  Google Scholar 

  • Talabardon M, Yang S (2005) Production of GFP and glucoamylase by recombinant Aspergillus niger: effects of fermentation conditions on fungal morphology and protein secretion. Biotechnol Prog 21:1389–1400

    Article  CAS  PubMed  Google Scholar 

  • Tan LUL, Ernest KC, Campbell N, Saddler JN (1986) Column cellulose hydrolysis reactor: an efficient cellulose hydrolysis reactor with continuous cellulase recycling. Appl Microbiol Biotechnol 25:250–255

    CAS  Google Scholar 

  • Tay A, Yang S (2002) Production of L (+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol Bioeng 80:1–12

    Article  CAS  PubMed  Google Scholar 

  • Tengerdy RP (1998) Solid substrate fermentation for enzyme production. In: Pandey A (ed) Advances in biotechnology, educational publishers and distributions. IP Ext, New Delhi

    Google Scholar 

  • Thongchul N, Yang S-T (2006) Controlling biofilm growth and lactic acid production by Rhizopus oryzae in a rotating fibrous bed bioreactor: effects of dissolved oxygen, rotational speed, and urea concentration. J Chin Inst Chem Eng, 37:49–61

    CAS  Google Scholar 

  • Tian X, Lu P, Song X, Nie S, Liu Y, Liu M, Wang Z (2017) Enzyme-assisted mechanical production of microfibrillated cellulose from Northern Bleached Softwood Kraft pulp. Cellulose 24(9): 3929–3942

    Article  CAS  Google Scholar 

  • Tiwari R, Nain L, Labrou NE, Shukla P (2018) Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review. Crit Rev Microbiol 44:244–257. https://doi.org/10.1080/1040841X.2017.1337713

    Article  CAS  PubMed  Google Scholar 

  • Trivedi N, Gupta V, Reddy C et al (2013) Detection of ionic liquid stable cellulase produced by the marine bacterium Pseudoalteromonas sp. isolated from brown alga Sargassum polycystum C. Agardh. Bioresour Technol 132:313–319

    Article  CAS  PubMed  Google Scholar 

  • Vaccaro L (2017) Biofuels and green chemistry—a common journey ahead. Biofuel Res J 4:713–714

    Article  Google Scholar 

  • Vastrad BM, Neelagund SE (2011) Optimization and production of neomycin from different agro industrial wastes in solid state fermentation. Int J Pharm Sci Drug Res 3:104–111

    CAS  Google Scholar 

  • Velkovska S, Marten MR, Ollis DF (1997) Kinetic model for batch cellulase production by Trichoderma reesei RUT C30. J Biotechnol 54:83–94

    Article  CAS  PubMed  Google Scholar 

  • Viikari L, Vehmaanperä J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenerg 46:13–24

    Article  CAS  Google Scholar 

  • Vollbrecht D (1997) History of solid-state fermentation. Chem Ing Tech 69:1403–1408

    Article  CAS  Google Scholar 

  • von Meien OF, Mitchell DA (2002) A two-phase model for water and heat transfer within an intermittently-mixed solid-state fermentation bioreactor with forced aeration. Biotechnol Bioeng 79:416–428

    Article  CAS  Google Scholar 

  • Wang Z, Wang Y, Yang S-T et al (2010) A novel honeycomb matrix for cell immobilization to enhance lactic acid production by Rhizopus oryzae. Bioresour Technol 101:5557–5564

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S, Greetham D, Tucker GA (2016) Evaluation of different lignocellulosic biomass pretreatments by phenotypic microarray-based metabolic analysis of fermenting yeast. Biofuel Res J 3(1):357–365

    Article  CAS  Google Scholar 

  • Williams JA (2002) A handful of basic bioreactor designs is used to produce a wide range of products, from antibiotics to foods to fuels. Here’s how to pick the best options for your application. Chem Eng Prog 2002:34–41

    Google Scholar 

  • Xiaohui L, Yinjiu H, Dongliang H et al (2012) Cellulase production by Aspergillus sp. on rice grass (Spartina spp.) under solid-state fermentation. Afr J Microbiol Res 6:6785–6792. https://doi.org/10.5897/AJMR12.986

    Article  CAS  Google Scholar 

  • Xin F, Geng A (2010) Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Appl Biochem Biotechnol 162:295–306

    Article  CAS  PubMed  Google Scholar 

  • Xu Z-N, Yang S-T (2007) Production of mycophenolic acid by Penicillium brevicompactum immobilized in a rotating fibrous-bed bioreactor. Enzyme Microb Technol 40:623–628

    Article  CAS  Google Scholar 

  • Yang Y (2017) Beyond the conventional “life cycle” assessment. Biofuel Res J 4:637

    Article  Google Scholar 

  • Yao G, Li Z, Gao L et al (2015) Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum. Biotechnol Biofuels 8:71. https://doi.org/10.1186/s13068-015-0253-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon L, Ang T, Ngoh G et al (2014) Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenerg 67:319–338

    Article  CAS  Google Scholar 

  • Zaldívar M, Velásquez JC, Contreras I, Pérez LM (2001) Trichoderma aureoviride 7–121, a mutant with enhanced production of lytic enzymes: its potential use in waste cellulose degradation and/or biocontrol. Electron J Biotechnol 4:13–14

    Article  Google Scholar 

  • Zanelato AI, Shiota VM, Gomes E et al (2012) Endoglucanase production with the newly isolated Myceliophtora sp. i-1d3b in a packed bed solid state fermentor. Brazil J Microbiol 43:1536–1544

    Article  CAS  Google Scholar 

  • Zhang L, Sun X (2014) Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste. Bioresour Technol 163:112–122

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chu D, Huang J et al (2010) Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnol Bioeng 105:718–728

    CAS  PubMed  Google Scholar 

  • Zhang W, Qiu J, Feng H et al (2015) Increase in stability of cellulase immobilized on functionalized magnetic nanospheres. J Magn Magn Mater 75:117–123

    Article  CAS  Google Scholar 

  • Zhang X, Li Y, Zhao X, Bai F (2017) Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator. Bioresour Technol 223:317–322. https://doi.org/10.1016/J.BIORTECH.2016.10.083

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanieh Shokrkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokrkar, H., Ebrahimi, S. & Zamani, M. A review of bioreactor technology used for enzymatic hydrolysis of cellulosic materials. Cellulose 25, 6279–6304 (2018). https://doi.org/10.1007/s10570-018-2028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2028-4

Keywords

Navigation