Skip to main content
Log in

Starch-based biocomposite membrane reinforced by orange bagasse cellulose nanofibers extracted from ionic liquid treatment

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Agricultural crop residues are known to be a renewable source of value-added products, and their application as a bio-based production chain type in the circular bioeconomy system is considered efficient in minimizing environmental problems. Value-added products, such as cellulose nanofibers (CNFs) from lignocellulose in agriculture residues, have been widely applied in the production of membranes that have desirable physicochemical characteristics. In this work, orange bagasse residue was used to obtain cellulose nanofiber and then applied to starch membranes as a mechanical reinforcement. The 1-methylimidazolium ionic liquid was used as biomass treatment for cellulose nanofiber isolation, and then two starch membranes were prepared with 5% (v/v) of cellulose nanofiber solution at 70 °C and 90 °C by the casting method. The cellulose nanofibers and membranes were characterized by scanning electron microscopy, fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. Thickness and tensile tests were applied to the membranes. Cellulose nanofibers less than 100 nm in diameter were obtained by the 1-methylimidazolium treatment, and the characterization analyses showed that the CNFs were incorporated into the membranes, which improved their mechanical resistance and thermal degradation capacity. However, membrane 1, which was prepared at 70 °C, showed a particularly significant gain in tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abral H, Ariksa J, Mahardika M, Handayani D, Aminah I, Sandrawati N, Sapuan SM, Ilyas RA (2020) Effect of ultrasonication duration of polyvinyl alcohol (PVA) gel on characterizations of PVA film. J Mater Res Technol 9(2):2477–86

    CAS  Google Scholar 

  • Abushammala H, Mao J (2020) A review on the partial and complete dissolution and fractionation of wood and lignocelluloses using imidazolium ionic liquids. Polymers 12:195

    CAS  PubMed Central  Google Scholar 

  • Agustin MB, Ahmmad B, Alonzo SMM, Patriana FM (2014) Bioplastic based on starch and cellulose nanocrystals from rice straw. J Reinf Plast Compos 33:2205–2213

    Google Scholar 

  • Asad M, Saba N, Asiri AM, Jawaid M, Indarti E, Wanrosli WD (2018) Preparation and characterization of nanocomposite films from oil palm pulp nanocellulose/poly (Vinyl alcohol) by casting method. Carbohyd Polym 191:103–111

    CAS  Google Scholar 

  • Balakrishnan P, Gopi S, Sreekala MS, Thomas S (2017) UV resistant transparent bionanocomposite films based on potato starch/cellulose for sustainable packaging. Starch Stärke 70:1700139

    Google Scholar 

  • Balea A, Fuente E, Monte MC, Merayo N, Campano C, Negro C, Blanco A (2020) Industrial application of nanocelluloses in papermaking: a review of challenges, technical solutions, and market perspectives. Molecules 25:526

    CAS  PubMed Central  Google Scholar 

  • Battirola LC, Andrade PF, Marson GV, Hubinger MD, Gonçalves MC (2017) Cellulose acetate/cellulose nanofiber membranes for whey and fruit juice microfiltration. Cellulose 24:5593–5604

    CAS  Google Scholar 

  • Benini KCCC, Voorwald HJC, Cioffi MOH, Rezende MC, Arantes V (2018) Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohyd Polym 192:337–346

    CAS  Google Scholar 

  • Berglund L, Noël M, Aitomäki Y, Öman T, Oksman K (2016) Production potential of cellulose nanofibers from industrial residues: Efficiency and nanofiber characteristics. Ind Crops Prod 92:84–92

    CAS  Google Scholar 

  • Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patel AK, Pant D, Rajesh Banu J, Rao CV, Kim YG, Yang YH (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Biores Technol 300:122724

    CAS  Google Scholar 

  • Blanshard JMV (1987) Starch granule structure and function: a physicochemical approach. In: Chichester T (ed) Starch: properties and potentials, galliard, 2nd edn. Wiley, New York

    Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94:154–169

    CAS  Google Scholar 

  • Chen Q, Shi Y, Chen G, Cai M (2020) Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent. Int J Biol Macromol 142:846–854

    CAS  PubMed  Google Scholar 

  • Cheng G, Zhou M, Wei YJ, Cheng F, Zhu PX (2017) Comparison of mechanical reinforcement effects of cellulose nanocrystal, cellulose nanofiber, and microfibrillated cellulose in starch composites. Polym Compos 40:365–372

    Google Scholar 

  • Corradini E, Carvalho AJF, Curvelo AAS, Agnelli JAM, Mattoso LHC (2007) Preparation and characterization of thermoplastic starch/zein blends. Mater Res 10:227–231

    Google Scholar 

  • Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew AP, Oksman K, Faria M, Thomas S, Pothan LA (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22:1075–1090

    CAS  Google Scholar 

  • Deepa B, Chirayil CJ, Pothan LA, Thomas S (2019) Lignocellulose-Based nanoparticles and nanocomposites: Preparation, Properties, and Applications. In: Ariffin H, Sapuan SM, Hassan MA (eds) Lignocellulose for Future Bioeconomy. Elsevier, Amsterdam, pp 41–69

    Google Scholar 

  • Dong XM, Revol JF, Gray DG (1998) Effect of microcrystalline of preparation condition on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    CAS  Google Scholar 

  • Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr opin colloid e interface sci 29:1–8

    CAS  Google Scholar 

  • Fan H, Ji N, Zhao M, Xiong L, Sun Q (2016) Characterization of starch films impregnated with starch nanoparticles prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation. Food Chem 192:865–872

    CAS  PubMed  Google Scholar 

  • Faria PC, Martin AA, Alves NP (2017) Characterization infrared (IR) and Surface electron microscopy (SEM) of asymmetric membranes based on Poly (acrylonitrile-co-vinyl acetate). Matéria 22:1

    Google Scholar 

  • Frost K, Kaminski D, Kirwan G, Lascaris E, Shanks R (2009) Crystallinity and structure of starch using wide angle X-ray scattering. Carbohyd Polym 78:543–548

    CAS  Google Scholar 

  • Golmohammadi H, Morales-Narvaez E, Naghdi T, Merkoci A (2017) Nanocellulose in sensing and biosensing. Chem Mater 29:5426–5446

    CAS  Google Scholar 

  • Hai L, Choi ES, Zhai L, Panicker PS, Kim J (2020) Green nanocomposite made with chitin and bamboo nanofibers and its mechanical, thermal and biodegradable properties for food packaging. Int J Biol Macromol 144:491–499

    CAS  PubMed  Google Scholar 

  • Halder P, Kundu S, Patel S, Setiawan A, Atkin R, Parthasarthy R, Ferreiro JP, Surapaneni A, Shah K (2019) Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renew Sustain Energy Rev 105:268–292

    CAS  Google Scholar 

  • Hideno A, Kentaro A, Hiroyuki Y (2014) Preparation using pectinase and characterization of nanofibers from orange peel waste in juice factories. J Food Sci 79:1218–1224

    Google Scholar 

  • Joshi M, Adak B (2019) Advances in nanotechnology based functional, smart and intelligent textiles: a review. reference module in materials science and materials engineering. Compr Nanosci Nanotechnol (Second Edition) 5:253–290

    CAS  Google Scholar 

  • Kakroodi AR, Cheng S, Sain M, Asiri A (2014) Mechanical, thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from aloe vera rind. J Nanomater 2014:1–7

    Google Scholar 

  • Kalita E, Nath BK, Agan F, More V, Deb P (2015) Isolation and characterization of crystalline, autofluorescent, cellulose nanocrystals from saw dust wastes. Ind Crops Prod 65:550–555

    CAS  Google Scholar 

  • Khalil AHPS, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979

    Google Scholar 

  • Khalil HA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd Polym 99:649–665

    Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrm T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem 50:5438–5466

    CAS  Google Scholar 

  • Lee C, Dazen K, Kafle K, Moore A, Johnson DK, Park S, Kim SH (2015) Correlations of apparent cellulose crystallinity determined by XRD, NMR, IR, Raman, and SFG Methods. Adv Polym Sci. https://doi.org/10.1007/12_2015_320

    Article  Google Scholar 

  • Li M, Witt T, Xie F, Warren FJ, Halley PJ, Gilbert RG (2015) Biodegradation of starch films: the roles of molecular and crystalline structure. Carbohyd Polym 122:115–122

    CAS  Google Scholar 

  • Liu R, Dai L, Si C, Zeng Z (2018) Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohyd Polym 195:63–70

    CAS  Google Scholar 

  • Lopez-Polo J, Silva-Weiss A, Zamorano M, Osorio FA (2020) Humectability and physical properties of hydroxypropyl methylcellulose coatings with liposome-cellulose nanofibers: food application. Carbohyd Polym 231:115702

    CAS  Google Scholar 

  • Mariño MA, Rezende CA, Tasic L (2018) A multistep mild process for preparation of nanocellulose from orange bagasse. Cellulose. https://doi.org/10.1007/s10570-018-1977-y

    Article  Google Scholar 

  • Meenatchi B, Renuga V, Manikandan A (2017) Cellulose dissolution and regeneration using various imidazolium based protic ionic liquids. J Mol Liq 238:582–588

    CAS  Google Scholar 

  • Meneses DB, Vásquez GMO, Baudrit JRV, Álvarez MR, Castillo JC, Araya LCM (2020) Pretreatment methods of lignocellulosic wastes into value-added products: recent advances and possibilities. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00722-0

    Article  Google Scholar 

  • Menezes DB, Brazil OAV, Romanholo-Ferreira LF, Polizeli MLTM, Ruzene DS, Silva DP, Costa LP, Hernández-Macedo ML (2017) Prospecting fungal ligninases using corncob lignocellulosic fractions. Cellulose 24:4355–4365

    CAS  Google Scholar 

  • Miranda CS, Fiuza RP, Carvalho RF, José NM (2015) Effect of surface treatment on properties of bagasse piassava fiber Attalea funifera Martius. Quim Nova 38:161–165

    CAS  Google Scholar 

  • Moyer P, Smith MD, Abdoulmoumine N, Chmely SC, Smith JC, PetridiSL LN (2018) Relationship between lignocellulosic biomass dissolution and physicochemical properties of ionic liquids composed of 3-methylimidazolium cations and carboxylate anions. Phys Chem Chem Phys 20:2508–2516

    CAS  PubMed  Google Scholar 

  • Nascimento JHO, Luz RF, Galvão FMF, Melo JDD, Oliveira FR, Ladchumananandasivam R, Zille A (2015) Extraction and characterization of cellulosic nanowhisker obtained from discarded cotton fibers. Mater Today Proc 2:1–7

    Google Scholar 

  • Nechyporchuk O, Kolman K, Bridarolli A, Odlyha M, Bozec L, Oriola M, Bordes R (2018) On the potential of using nanocellulose for consolidation of painting canvases. Carbohyd Polym 194:161–169

    CAS  Google Scholar 

  • Ninomiya K, Abe M, Tsukegi T, Kuroda K, Tsuge Y, Ogino C, Takahashi K (2018) Lignocellulose nanofibers prepared by ionic liquid pretreatment and subsequent mechanical nanofibrillation of bagasse powder: application to esterified bagasse/polypropylene composites. Carbohyd Polym 182:8–14

    CAS  Google Scholar 

  • Oliveira FB, Bras J, Pimenta MTB, Curvelo AAS, Belgacem MN (2016) Production of cellulose nanocrystals from sugarcane bagasse fibers and pith. Ind Crops Prod 93:48–57

    Google Scholar 

  • Orrabalis C, Rodríguez D, Pampillo LG, Londoño-Calderón C, Trinidad M, Martínez-García R (2019) Characterization of nanocellulose obtained from Cereus Forbesii (a South American cactus). Mater Res 22(6):e20190243. https://doi.org/10.1590/1980-5373-mr-2019-0243

    Article  CAS  Google Scholar 

  • Osorio J, Dreolin N, Aznar M, Nerín C, Hancock P (2019) Determination of volatile non intentionally added substances coming from a starch-based biopolymer intended for food contact by different gas chromatography-mass spectrometry approaches. J Chromatogr A 1599:215–222

    CAS  PubMed  Google Scholar 

  • Pelissari FM, Sobral PJA, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432

    CAS  Google Scholar 

  • Pereira PHF, Ornaghi Júnior HL, Coutinho LV, Duchemin B, Cioffi MOH (2020) Obtaining cellulose nanocrystals from pineapple crown fibers by free-chlorite hydrolysis with sulfuric acid: physical, chemical and structural characterization. Cellulose 27:5745–5756

    CAS  Google Scholar 

  • Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G (2018) Nanocellulose: extraction and application. Carbon Resour Convers 1:32–43

    Google Scholar 

  • Pires JRA, Souza VGL, Fernando AL (2018) Production of nanocellulose from lignocellulosic biomass wastes: prospects and limitations. Lect Notes Electr Eng 505:719–725

    Google Scholar 

  • Pleissner D, Qi Q, Gao C, Rivero CP, Webb C, Lin CSK, Venus J (2016) Valorization of organic residues for the production of added value chemicals: a contribution to the bio-based economy. Biochem Eng J 116:3–16

    CAS  Google Scholar 

  • Pozo C, Rodríguez-Llamazares S, Bouza R, Barral L, Castaño J, Müller N, Restrepo I (2018) Study of the structural order of native starch granules using combined FTIR and XRD analysis. J Polym Res. https://doi.org/10.1007/s10965-018-1651-y

    Article  Google Scholar 

  • Quesada-González D, Stefani C, González I, Escosura-Muñiz A, Domingo N, Mutjé P, Merkoçi A (2019) Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers. Biosens Bioelectron 141:111407

    PubMed  Google Scholar 

  • Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6:2807–2828

    CAS  Google Scholar 

  • Rambabu N, Panthapulakkal S, Sain M, Dalai AK (2016) Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Ind Crops Prod 83:746–754

    CAS  Google Scholar 

  • Santanocito A, Arena, A (2019) Orange fiber: the company making fabrics from citrus juice waste. Publishing globalshakers. https://globalshakers.com/orange-fiber-the-company-making-fabrics-from-citrus-juice-waste/. Accessed 21 Dec 2020

  • Segal L, Creely J, Martin JRAE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    CAS  Google Scholar 

  • Seo M, Seo M, Choi SE, Shin K, Lee JB, Yang DY, Kim JW (2020) Cellulose nanofiber-multilayered fruit peel-mimetic gelatin hydrogel microcapsules for micropackaging of bioactive ingredients. Carbohyd Polym 229:115559

    CAS  Google Scholar 

  • Silva BAJ, Nascimento T, Costa LAS, Pereira FV, Machado BA, Gomes GVP, Assis DJ, Druzian JI (2015) Effect of source and interaction with nanocellulose cassava starch, glycerol and the properties of films bionanocomposites. Mater Today Proc 2:200–207

    Google Scholar 

  • Sofla MRK, Brown RJ, Tsuzuki T, Rainey TJ (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci Nanosci Nanotechnol 7(3):035004. https://doi.org/10.1088/2043-6262/7/3/035004

    Article  CAS  Google Scholar 

  • Souza EE, Vale RS, Vieira JG, Ribeiro SD, Filho GR, Marques FA, Assunção RMN, Meireles CS, Barud HS (2015) Preparation and characterization of regenerated cellulose membranes using cellulose extracted from agroindustrial residues for application in separation processes. Quim Nova 38:202–208

    Google Scholar 

  • Tan C, Peng J, Lin W, Xing Y, Xu K, Wu J, Chen M (2015) Role of surface modification and mechanical orientation on property enhancement of cellulose nanocrystals/polymer nanocomposites. Eur Polym J 62:186–197

    CAS  Google Scholar 

  • Tasic L, Tsukamoto J, Awan AT, Durán N (2013) Patent: privilege of innovation. Registration number: BR1020130325856, deposit date: 12/18/2013, title: "Process of obtaining bioethanol, spheridine and nanocellulosis from orange bagasse", Registration institution: INPI—Instituto Nacional da Propriedade Industrial

  • Theivasanthi T, Anne Christma FL, Toyin AJ, Gopinath SCB, Ravichandran R (2018) Synthesis and characterization of cotton fiber-based nanocellulose. Int J Biol Macromol 109:832–836

    CAS  PubMed  Google Scholar 

  • Thiré RMSM, Andrade CT, Simão RA (2005) Effect of aging on the microstructure of plasticized cornstarch films. Polímeros 15:130–133

    Google Scholar 

  • Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786

    CAS  PubMed  Google Scholar 

  • Tsukamoto J, Durán N, Tasic L (2013) Nanocellulose and bioethanol production from orange waste using isolated microorganisms. J Braz Chem Soc 24:1537–1543

    CAS  Google Scholar 

  • Wang LF, Shankar S, Rhim JW (2017) Properties of alginate-based films reinforced with cellulose fibers and cellulose nanowhiskers isolated from mulberry pulp. Food Hydrocoll 63:201–208

    Google Scholar 

  • Wang Y, Ying Z, Xie W, Wu D (2020) Cellulose nanofibers reinforced biodegradable polyester blends: ternary biocomposites with balanced mechanical properties. Carbohyd Polym 233:115845

    CAS  Google Scholar 

  • Yoo CG, Pu Y, Ragauskas AJ (2017) Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Gr Sustain Chem 5:5–11

    Google Scholar 

  • Yousefhashemi SM, Khosravani A, Yousefi H (2019) Isolation of lignocellulose nanofiber from recycled old corrugated container and its interaction with cationic starch–nanosilica combination to make paperboard. Cellulose 26:7207–7221

    CAS  Google Scholar 

  • Zain MNF, Yusop SM, Ahmad I (2014) Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) Albedo. J Nutr Food Sci 5:334. https://doi.org/10.4172/2155-9600.1000334

    Article  CAS  Google Scholar 

  • Zhang Z, O’Hara IM, Doherty WOS (2013) Effects of pH on pretreatment of sugarcane bagasse using aqueous imidazolium ionic liquids. Gr Chem 15:431–438

    CAS  Google Scholar 

  • Zhang Y, Rempel C, Liu Q (2014) Thermoplastic starch processing and characteristics - a review. Crit Rev Food Sci Nutr 54:1353–1370

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

DBM and MLHM thank the funding of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Fundação de Apoio à Pesquisa e à Inovação Tecnológica do Estado de Sergipe (Fapitec-SE) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their financial support and Ph.D fellowship. LPC thanks CNPQ for the financial support of the PQ scholarship, process 311461/2017-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria L. Hernández-Macedo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, D.B., Diz, F.M., Romanholo Ferreira, L.F. et al. Starch-based biocomposite membrane reinforced by orange bagasse cellulose nanofibers extracted from ionic liquid treatment. Cellulose 28, 4137–4149 (2021). https://doi.org/10.1007/s10570-021-03814-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-03814-w

Keywords

Navigation